
AARHUS  
UNIVERSITY
DCE – DANISH CENTRE FOR ENVIRONMENT AND ENERGY

AU

Scientific Report from DCE – Danish Centre for Environment and Energy No. 596 2024

ASSESSMENT OF THE AREAL DISTRIBUTION 
OF SUBMERGED AQUATIC VEGETATION 
USING REMOTE SENSING IN DANISH 
COASTAL WATERS
Integrated Marine Monitoring – analytical phase





Scientific Report from DCE – Danish Centre for Environment and Energy

AARHUS  
UNIVERSITY
DCE – DANISH CENTRE FOR ENVIRONMENT AND ENERGY

AU

2024

ASSESSMENT OF THE AREAL DISTRIBUTION 
OF SUBMERGED AQUATIC VEGETATION USING 
REMOTE SENSING IN DANISH 
COASTAL WATERS
Integrated Marine Monitoring – analytical phase

Peter A.U. Stæhr1

Lisbeth Tangaa Nielsen2

Mihailo Azhar1, Cordula Göke1

Silvia Huber2

Jesper P.A. Christensen1

Lars B. Hansen2

Sanjina U. Stæhr1

Dorte Krause-Jensen1

1Aarhus University, Department of Ecoscience
2DHI

No. 596



Series title and no.: 

Category: 

Title: 

Subtitle: 

Author(s): 

Institution(s): 

Publisher: 
URL: 

Year of publication: 
Editing completed: 

Referee(s): 
Quality assurance, DCE: 

 Linguistic QA: 

External comments: 

Financial support: 

Please cite as: 

Abstract: 

Keywords: 

Front page photo: 

ISBN: 
ISSN (electronic): 

Number of pages: 

Supplementary notes: 

Data sheet 

Scientific Report from DCE – Danish Centre for Environment and Energy No. 596 

Research contribution 

Assessment of the areal distribution of submerged aquatic vegetation using remote 
sensing in Danish coastal waters 
Integrated Marine Monitoring - analytic phase 

Peter A.U. Stæhr1, Lisbeth Tangaa Nielsen2, Mihailo Azhar1, Cordula Göke1, Silvia Huber2, Jesper 
P.A. Christensen1, Lars B. Hansen2, Sanjina U. Stæhr1 & Dorte Krause-Jensen1 

1Aarhus University, Department of Ecoscience, 2DHI 

Aarhus University, DCE – Danish Centre for Environment and Energy © 
http://dce.au.dk/en 

March 2024 
March 2024 

Andreas M. Holbach 
Anja S. Hansen 
Andreas M. Holbach 

The comments can be found here: https://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/
Videnskabelige_rapporter_500-599/KommentarerSR/SR596_komm.pdf 

The Danish EPA, IMM project 

Stæhr, P.A.U., Nielsen, L.T., Azhar, M., Göke, C., Huber, S., Christensen, J.P.A., Hansen, L.B., 
Stæhr, S.U., Krause-Jensen, D. (2024). Assessment of the areal distribution of submerged 
aquatic vegetation using remote sensing in Danish coastal waters. Integrated Marine 
Monitoring - analytical phase. Aarhus University, DCE – Danish Centre for Environment and 
Energy, 61 p. – Scientific Report no. 596 

Reproduction permitted provided the source is explicitly acknowledged. 

The use of different types of remote sensing data to acquire information on the distribution and 
cover of marine underwater vegetation was examined in two Danish fjord systems for the 
period 2017-2023. Promising results including high resolution vegetation mapping, 
differentiation of vegetation types as well as different algorithms for improved cover and area 
classification were investigated. Results from classifications and estimates of areal coverage 
were combined with modelling to develop novel eelgrass indicators of ecological status, which 
were evaluated against existing indicators. Recommendations for large-scale implementation 
of remote sensing as a promising tool to map and monitor marine vegetation are provided.   

Remote sensing, submerged aquatic vegetation, eelgrass, macroalgae, good ecological 
status, indicator, areal coverage 

Ortho photo from summer 2022 covering Strynø in the South Fynen archipelago. Obtained 
by Mihailo Azhar 

978-87-7156-858-5 
2244-9981 

61 

Author contributions:  

Initials Contributions 
C M S V FA I R DC WOD WRE V S PA FA 

PAUS x x x x x x x x x x x x x x 
LTN x x x x x x x x x 
MA x x x x x x x 
CG x x x x x x x x 
SH x x x x x x x x 
JPAC x x x x 
LBH x x X x x x 
SUS x 
DKJ x x 

Conceptualization (C); Methodology (M), Software (S), Validation (V), Formal analysis (FA), Investigation (I), 

Resources (R), Data Curation (DC), Writing - Original Draft (WOD), Writing - Review & Editing (WRE), 

Visualization (V), Supervision (S), Project administration (PA), Funding acquisition (FA) 

https://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/Videnskabelige_rapporter_500-599/KommentarerSR/SR596_komm.pdf


Contents 

Preface 5 

Sammenfatning 6 

Summary 8 

1 Introduction 10 
1.1 Project aims 11 
1.2 Expected outcomes 12 

2 Methods 13 
2.1 Remote Sensing products 13 
2.2 Development of an ecological status indicator based on 

RS data 17 

3 Results 24 
3.1 Remote Sensing products 24 
3.2 Ecological status indicators 37 

4 Discussion and conclusions 49 
4.1 Remote sensing products 49 
4.2 Ecological status indicators 53 

5 Recommendations for the implementation phase 57 
5.1 Further development of RS products for mapping 

underwater vegetation 57 
5.2 Development of eelgrass status indicators from RS-data 57 

6 References 59 

 
 

 





5 

Preface 

This report presents results from a sub-project of the 4-year Integrated Marine 
Environmental Monitoring (in Danish “Integreret Marin Miljøovervågning ~ 
IMM) project, which is a transversal project under the Danish Environmental 
Protection Agency (EPA). The IMM project includes both monitoring technol-
ogies, IT architecture and environmental modeling with the main aim of inte-
grating and modernizing the marine monitoring program. Furthermore, all 
the IMM sub-projects are divided into separate projects for the analysis and 
the implementation phase. This subproject focuses on the use of remote sens-
ing technologies for improved mapping of submerged aquatic vegetation and 
assessment of ecological status in Danish coastal waters as described in the 
Water Framework Directive (WFD). The subproject is done as a collaboration 
between Aarhus University, DCE and DHI A/S, with Aarhus University in 
charge of the assessment of ecological status and DHI A/S in charge of the 
remote sensing-based analysis. The report has been read and commented on 
by the Danish EPA. 
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Sammenfatning 

Danmark er via vandrammedirektivet forpligtet til at vurdere miljøtilstanden 
af vores kystnære havmiljø. Dette omfatter bl.a. analyser af den marine un-
dervandsvegetation, som i mere end 30 år har været overvåget som en del af 
det nationale marine overvågningsprogram, NOVANA. Overvågningen om-
fatter flere hundrede transekter, hvor blomsterplanter (primært ålegræs) og 
makroalgers forekomst, dækningsgrad, og dybdeudbredelse kortlægges og 
afrapporteres årligt. Særligt ålegræs er en nøgle   parameter i NOVANA pro-
grammet, da der er udviklet en robust indikator for miljøtilstanden baseret på 
dybden af hovedudbredelsen af ålegræs. For makroalger er der udviklet en 
ny indikator, som baserer sig på ændringer i den akkumulerede dækning med 
dybden. Miljøindikatorerne anvendes til at vurdere den økologiske tilstand, 
med særligt fokus på at vurdere om God Økologisk Tilstand (GØT) er opnået, 
som vandrammedirektivet kræver. Denne rapport analyserer mulighederne 
ved at anvende forskellige typer remote sensing (RS) -teknologier til at 
kortlægge undervandsvegetationen (ålegræs og makroalger/submers aquatic 
vegetation (SAV)), og baseret på disse data at udvikle en ny indikator til at 
vurdere den økologiske tilstand af de danske farvande. 

Rapporten omfatter detaljerede studier i to vandområder, hhv. Odense fjord, 
ydre del og Nibe Bredning (del af Limfjorden) og data fra perioden 2017 til 
2023. Vi har anvendt Remote Sensing (RS) data fra Sentinel-2 satellitterne (S2), 
ortho photos (OP), og en kommerciel satellit (Airbus Pléiades Neo) med høj 
rumlig opløsning / Very High Resolution (VHR). Analyserne havde til formål 
at 1) videreudvikle metoder til at kortlægge arealudbredelse af SAV vha. for-
skellige typer RS-data, 2) teste muligheden for at skelne mellem ålegræs og 
makroalger og, baseret på RS-data, at 3) udvikle en ny økologisk tilstandsindi-
kator for vandkvalitet.  

Klassificering af SAV baseret på S2, VHR og OP data blev foretaget ved hjælp 
af en deep learning metode, fremfor den tidligere anvendte pixel-baserede 
random forest metode. Den nye metode blev valgt ud fra et ønske om at eta-
blere en mere robust model, som også er fleksibel med hensyn til hvilke 
billeddata, der anvendes som inputdata. Analyserne viste, at metoden virker, 
ikke kun på S2-data, men også på OP- og VHR-data. Skaleringspotentialet er 
også tydeligt; i løbet af projektet har det været muligt at udføre længere 
tidsserieanalyser for to vandområder uden at generere store mængder nye 
træningsdata til klassifikationen. Vores analyser bekræfter også, at deep 
learning metoden kan effektivisere den nuværende klassifikation og 
kortlægning af undervandsvegetationen, der er indbygget i SAV Denmark 
App'en udviklet af DHI, samt bidrage til mere ensartede resultater, der er 
mindre afhængig af hvem der anvender af App'en. 

For at udvikle en økologisk tilstandsindikator baseret på SAV-ar-
ealudbredelse blev de samme principper anvendt, som den eksisterende in-
dikator for ålegræssets hovedudbredelsesdybde (Zmax) er baseret på. 
Arealindikatoren blev således baseret på en sammenligning af nye observa-
tioner (her SAV-arealet i 1 til 5 m dybdeintervallet, baseret på henholdsvis S2 
og OP) i forhold til SAV arealet ved en god referencetilstand, hvor 
sidstnævnte blev estimeret ved hjælp af en model udviklet for ålegræs. Sam-
menligning af den nye arealindikator med den eksisterende Zmax-indikator 
viste generelt god overensstemmelse og gav sammenlignelige vurderinger af 
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den økologiske tilstand i Odense Fjord og Limfjorden, dog med afvigelser i 
nogle år. Begge indikatorer viste en begrænset sammenhæng med målte 
vandkvalitetsparametre (klorofyl og lysdæmpning, Kd) i de to vandområder. 
Da arealindikatoren anvender reference-værdier for ålegræs, men nye RS-ob-
servationer for SAV, kan indikatoren kun anvendes i områder hvor SAV er 
domineret af ålegræs, som i Nibe Bredning og til dels i Odense fjord.  

Endelig testede vi muligheden for at estimere Zmax ud fra RS-data ved at 
modellere dybdeafhængigheden af den RS-baserede dækningsgrad af SAV. 
Dette blev gjort på både transekt- og systemniveau for de to områder. De es-
timerede Zmax værdier viste god overensstemmelse med de traditionelle op-
gørelser udført af MST, særligt for modeller baseret på data for hele vandom-
rådet og bedst for vandområdet i Limfjorden, hvor udbredelsen af ålegræs er 
mere homogen end i Odense Fjord. 

På baggrund af de indhøstede erfaringer har vi en række anbefalinger til yder-
ligere undersøgelser i en eventuel implementeringsfase af IMM-projektet: 

1. Implementering af den testede deep learning metode til SAV klassi-
ficering, og mulighed for multitemporal SAV kortlægning baseret på 
S2, OP og satellit VHR-data. Det vil markant forbedre den rumlige 
information og give indsigt i vegetationens dynamik og udbredelse 
gennem hele vækstsæsonen, men også mellem år. Deep learning 
metoden er baseret på - og afhængig af mange annoterede 
træningsdata, og derfor vil inddragelse af flere træningsdata løbende 
forbedre billedtolkningen. Udvikling af en national/regional data-
base af billedtræningsdata vil derfor forbedre metodens anvende-
lighed markant. Storskala kortlægning bliver derved væsentligt mere 
effektiv og sammenlignelig i tid og rum uden krav for billede specif-
ikt trænings- og in situ data.  

2. Betydningen af sæsonvariationer i SAV udbredelsen bør undersøges 
nærmere for den udviklede areal-baserede indikator. 

3. Muligheder for at klassificere %dækning af SAV i de enkelte pixels 
ved hjælp af S2-data for herved at forbedre areal-SAV-kortlægningen 
samt data til den areal-baserede indikator. 

4. Mulighed for at forbedre arts-separation i SAV kortlægningen med 
brug af VHR og/eller OP og deep learning modellen. 

5. Videreudvikling af den anvendte ålegræs GIS model til at forbedre 
kortlægningen af reference ålegræsarealet i vandområderne. 

6. Vurdering af arealindikatorens anvendelighed på lokal skala 
(omkring transekter) og national målestok (alle relevante vandom-
råder). 

7. Udvikling og vurdering af en økologisk tilstandsindikator baseret på 
tætheden (patchiness) af SAV. 

8. Videre test af modellering af Zmax ud fra RS-baseret SAV dækning i 
dybdeintervaller.  
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Summary 

Denmark is obliged via the water framework directive (WFD) to assess the 
ecological status of our coastal marine waters. This includes, among other, 
analysis of the marine submerged aquatic vegetation (SAV), which has been 
monitored for more than 30 years as part of the national marine monitoring 
program, NOVANA. The monitoring includes several hundred transects 
where the occurrence, cover, and depth distribution of flowering plants (pri-
marily eelgrass) and macroalgae are quantified and reported annually. Eel-
grass is a key parameter in the NOVANA program, as the main depth distri-
bution (Zmax) of eelgrass is a primary indicator of the ecological status for the 
Danish Sea. For macroalgae, the indicator is based on changes in the accumu-
lated cover with depth. The vegetation indicators are used, together with 
other indicators, to assess the ecological status and specifically, whether good 
ecological status (GES) is achieved, as required by the WFD. This report ana-
lyzes the possibilities of using different types of remote sensing (RS) technol-
ogies for mapping the areal coverage of SAV and from this develop a new 
indicator for GES assessment. 

The report includes detailed studies in two water areas, outer Odense Fjord 
and Nibe Bredning (part of the Limfjord) respectively, and data from the pe-
riod 2017 to 2023. Here data from the Sentinel-2 satellites (S2), ortho photos 
(OP) and a commercial satellite (Airbus Pléiades Neo) with high spatial reso-
lution / Very High Resolution (VHR) were used. The purpose of the analyzes 
was to 1) further develop methods to map the area distribution of SAV, 2) test 
the possibility of distinguishing between eelgrass and macroalgae and, 3) 
based on SAV area data, to develop a new environmental indicator for assess-
ment of the ecological status. 

Classification of SAV based on S2, VHR and OP data was done using a deep 
learning method as opposed to the previously used pixel-based random forest 
method. The new method was chosen based on a desire to establish a more 
robust model, which is also flexible regarding which image data is used as 
input data. The analyzes documented the usefulness of the deep learning 
method, not only on S2 data, but also on OP and VHR data. A clear scaling 
potential was also made evident; during the project, it was possible to carry 
out longer time series analyzes for two water areas without generating large 
amounts of new training data for the classifier. The evaluation also confirms 
that the method can streamline the current method that is built into the DHI-
developed SAV Denmark App, as well as contribute to more uniform results 
that are less dependent on the person operating the App. 

To develop an ecological status indicator based on SAV distribution area 
(“SAV area indicator”), the same principles were used as for the existing in-
dicator for the main distribution depth (Zmax) of eelgrass. The area indicator 
was thus based on a comparison of observed status (here the SAV area in 1 to 
5 m depth interval, based on S2 and OP respectively) in relation to the area of 
SAV at a reference state, where the latter was estimated using a model devel-
oped for eelgrass. Comparison of the new SAV area indicator with the Zmax 
indicator showed overall good agreement and provided similar assessment of 
ecological status in the two test areas, although with some differences. Both 
the new area-based and the existing Zmax indicator, however, showed a lim-
ited relationship with measured water quality parameters (Chlorophyll and 
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light attenuation, Kd). Since the area indicator uses reference values for eel-
grass, but new observations obtained with RS-data provides SAV values, the 
indicator can only be used in areas where SAV is dominated by eelgrass, such 
as in Nibe Bredning but less so in Odense fjord. Thus, the new area-based 
indicator represent eelgrass and not SAV. 

Finally, we tested the possibility of estimating Zmax by modeling the depth 
dependence of the RS-derived SAV coverage. This was done at both the tran-
sect-level, and at water area level for the two test areas, where SAV is domi-
nated by eelgrass. The estimated Zmax showed good agreement with the tra-
ditional calculations carried out as part of the national monitoring program, 
especially for models based on data for the entire water area and best for the 
water area in Nibe Bredning, in the Limfjord, where the distribution of eel-
grass is more homogeneous. 

Based on the experience gained for both RS-analysis and development of new 
indicators, we have several recommendations for further studies in a possible 
implementation phase of the IMM project: 

1. Implementation of the tested deep learning method for SAV classifi-
cation, and the possibility of multitemporal SAV mapping based on 
S2 and VHR data. It will significantly improve the spatial information 
and provide insight into the vegetation dynamics and distribution, 
throughout the growing season, but also between years. The deep 
learning method is based on and dependent on many annotated train-
ing data. Inclusion of more training data will therefore continuously 
improve the image interpretation Development of a national/re-
gional database of image training data will accordingly significantly 
improve the method's usability. Large-scale mapping thereby be-
comes significantly more efficient and comparable in time and space 
without requirements for image-specific training and in situ data. 

2. Further assessment of the importance of seasonality in SAV cover for 
the responsiveness of the new areal-based indicator. 

3. Possibilities of specifying the density of SAV using S2 data, to im-
prove estimates of observed areal SAV cover. 

4. Possibility of better species separation in the SAV mapping using 
VHR and/or OP and the deep learning model 

5. Further development of the eelgrass GIS model applied to accurately 
model local conditions and estimate the SAV areal under reference 
conditions. 

6. Assessment of the performance of the areal indicator at local scale 
(around transects) and national scale (all relevant water areas). 

7. Development and assessment of a RS status indicator based on den-
sities and patchiness of SAV. 

8. Further test of modelling Zmax from analysis of RS-based SAV cover 
along depth gradients. 
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1 Introduction 

Peter A.U. Stæhr, Lisbeth Tangaa Nielsen, Mihailo Azhar, Cordula Göke, Silvia Huber, 
Jesper P.A. Christensen, Lars B. Hansen, Sanjina U. Stæhr and Dorte Krause-Jensen 

The underwater marine vegetation or the submerged aquatic vegetation 
(SAV) along Denmark's coastline has been monitored for more than 30 years 
as part of the national marine monitoring program, NOVANA. The monitor-
ing includes several hundred transects where the occurrence, density, and 
depth distribution of flowering plants (primarily eelgrass) and macroalgae are 
mapped and reported annually. Especially eelgrass is a key parameter in the 
NOVANA program, as the depth of the main distribution of eelgrass (Zmax, 
defined as the maximum depth of 10% eelgrass cover) is a primary indicator 
of ecological status. For macroalgae, new indicators reflecting macroalgal spe-
cies richness and changes in the accumulated macroalgal coverage with depth 
have been developed and are in the process for approval at the EU level. The 
environmental indicators are used to assess the ecological status of marine 
flora under the water framework directive (WFD) in Denmark’s 109 coastal 
water bodies. Currently, data for determining the main distribution depth of 
eelgrass is based on a manual visual review of video recordings along depth 
gradients. Macroalgal cover estimates are based on diving. However, these in 
situ collection methods are both costly and time consuming, and "only" pro-
vide data / information on the selected locations/transects, and not for the 
entire water body.  

The Danish Environmental Protection Agency (EPA) has therefore previously 
supported DCE-led projects (RESTEK project) to develop effective supple-
mentary methods to monitor the large-scale area distribution and coverage of 
eelgrass in Danish waters via Remote Sensing (RS) (Rasmussen et al. 2020, 
Ørberg et al. 2018, Stæhr et al. 2019a; Boderskov et al. 2022). In addition, DHI 
has developed a satellite-based classification system for the EPA – currently 
implemented with Copernicus Sentinel-2 data - for mapping marine vegeta-
tion distribution. This system constitutes a digital platform with a mapping 
tool (SAV Denmark App) which enables the Danish EPA employees to train 
a classification model in predefined calculation areas and create submerged 
aquatic vegetation (SAV) maps based on any Sentinel-2 (S2) image accessible 
via the App. 

Different studies have documented the usefulness of RS technologies for map-
ping marine vegetation (eelgrass and macroalgae) in shallow coastal waters 
(e.g., Stæhr et al. 2019a, Lønborg et al. 2022, Huber et al., 2022). Mounted with 
the right camera and/or measuring equipment, drones, airplanes, and satel-
lites can also be used to record many important supporting parameters in wa-
ter, such as water temperature, light attenuation/visibility depth, chlorophyll 
content, turbidity. The conclusion from the RESTEK project (Stæhr et al. 
2019a), and other later publications (Mederos Barrera et al. 2022, Lønborg et 
al. 2022) is that RS technologies have a great potential to map SAV. However, 
the conclusions also highlight that there is not one perfect RS technology to 
map SAV, and that the inclusion of RS technologies should be carefully con-
sidered with validation e.g. based on the existing conventional in situ obser-
vation/monitoring program. Furthermore, differences in spatial, spectral, 
and temporal resolutions as well as area coverage give rise to different 
strengths and weaknesses of the individual RS technologies in terms of 
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mapping SAV. Drones, for instance, provide data with very high spatial res-
olution (VHR) that can enable differentiation between marine vegetation 
types, but the data only covers small areas and the operating cost for drones 
(price per km2) is relatively high (Stæhr et al. 2019a). In comparison, satellites 
(e.g., Copernicus Sentinel-2) provide systematic data at 10m spatial resolu-
tion, covering a larger spectral range (visible-shortwave infrared) and a large 
spatial coverage, but the lower spatial resolution makes it difficult to distin-
guish between vegetation types, e.g., eelgrass from macroalgae. However, for 
SAV mapping at large scale, analyzing free satellite S2 imagery is currently 
the only cost-efficient method that can facilitate operational and consistent 
monitoring of SAV. Continuously operating satellite sensors can cover large 
areas quickly and repeatedly. This enables assessment of different vegetation 
stages during the growing season in optically shallow waters that are suffi-
ciently clear to retrieve significant reflectance signals from the seafloor habi-
tats. A common challenge for almost all the RS technologies is also to detect 
bottom vegetation at depths where limited light reduces the contrast between 
the vegetation and the surrounding seafloor, in Danish coastal water roughly 
greater than 4-5 meters (Stæhr et al. 2019a), or in the presence of turbid or 
choppy waters. This limits the potential of RS-methods to assess the full areal 
distribution of eelgrass, and coverage of macroalgae all the way to their depth 
limits as well as to monitor changes in these variables over time. Nevertheless, 
RS-techniques have the potential to supplement existing information with es-
timates of area cover at shallow and intermediate water depths where the is-
sue related to limited light is not prominent such as in systems characterized 
by very shallow water. 

1.1 Project aims 
The project “Assessment of the areal distribution of marine vegetation using 
remote sensing” is a sub-project under the 4-year IMM (Integrated Marine 
Environmental Monitoring, in Danish ‘Integreret Marin Miljøovervågning’) 
project. This IMM project is further divided into an analysis phase (2023) and 
an implementation phase (2024-2026). For the analysis phase, the Danish EPA 
has asked for a description of how DCE and DHI can deliver research and 
development around the following: 

1. Develop tools to map the marine underwater vegetation in all Danish coastal 
waters using cost-efficient RS technologies, building on existing mapping 
tools (SAV Denmark App - https://sav-denmark.dhigroup.com ).  

2. Develop a new environmental indicator of ecological status based on the 
areal extent of marine underwater vegetation. The indicator should even-
tually, in an implementation phase, make it possible to assess ecological 
status in all coastal water areas with eelgrass using an Ecological Quality 
Ratio (EQR) scale. The EQR scale should be intercalibrated with the exist-
ing eelgrass depth limit (Zmax) indicator to reach consistency between 
the two indicators. 

  

https://sav-denmark.dhigroup.com/
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1.2 Expected outcomes 

1.2.1 Remote Sensing of underwater vegetation 

1. Further method development of a satellite-based classification system 

2. Test methods to integrate different RS data (Orthophotos (spring and 
summer), Sentinel-2 and VHR commercial satellites to determine ar-
eal cover of SAV and assess the ability to distinguish vegetation types.  

3. Test the value of supplementing information layers (e.g., bathymetry, 
Kd/light, eelgrass habitat suitability model) for mapping vegetation 
coverage.  

1.2.2 Marine vegetation status indicators based on RS data 

1. Develop and test a new environmental ecological indicator based on 
RS-based data on areal SAV coverage. This should focus on the 1-to-
5-meter depth interval to avoid bias from physical exposure (shallow 
depths) and uncertainties with RS classification of SAV at greater 
depths associated with low signal to noise ratio here. 

2. Define reference conditions for areal coverage of eelgrass dominated 
SAV based on modelling and historical knowledge. And use this to 
define EQR values representing different environmental status con-
ditions. 

3. Compare the resulting new area-based indicator against the existing 
Zmax-based indicator and assess the importance and links to key en-
vironmental conditions obtained through the NOVANA program 
(light attenuation (Kd) and Chlorophyll).    

4. Evaluate the possibility of estimating the maximum distribution 
depth limit (Zmax) of eelgrass from RS-based coverage along depth 
gradients and assess the robustness of the estimated Zmax-indicator. 
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2 Methods 

Peter A.U. Stæhr, Lisbeth Tangaa Nielsen, Mihailo Azhar, Cordula Göke, Sil-
via Huber, Jesper P.A. Christensen, Lars B. Hansen, Sanjina U. Stæhr and 
Dorte Krause-Jensen 

The analysis focuses on two test areas 1) outer Odense fjord and 2) Nibe Bred-
ning in the Limfjord (see Figure 2.1). 

2.1 Remote Sensing products 

2.1.1 Further development of a satellite-based classification system   

The method currently implemented in the Backend of the SAV Denmark App 
(SAV Denmark App - https://sav-denmark.dhigroup.com) is based on a light 
gradient boosting machine (LGBM) which is a freely distributed, open-source 
gradient boosting framework for ML originally developed by Microsoft 
(Meng et al. 2017). The LGBM was chosen because it is a powerful and effi-
cient technique for building predictive models; the training process is fast, ad-
ditional training polygons can be added easily at any stage, and the model 
can be applied to very large datasets. A more detailed description of the im-
plementation and application at large scale is described in Huber et al. (2021). 
The drawback of the LGBM implementation is that the model needs to be 
trained each time a new SAV map is created using the SAV Denmark App. In 
this task (this report) DHI investigated how the satellite-based classification 
system can be further developed and optimized by using Deep learning meth-
odologies and explore ML model architectures developed for computer vision 
tasks that would allow to reuse pretrained models and apply them on new 
satellite imagery without retraining them. Such a transfer learning-based ap-
proach would reduce manual input considerably in the App and reduce ob-
jectivity of an operator providing training data via the SAV Denmark App.  

For the transfer learning-based approach, DHI tested a convolutional neural 
network (CNN) specifically developed for semantic segmentation and im-
proved prediction performance as compared to other well-known CNNs (Yi 
et al. 2019). The CNN learns to perform the SAV classification based on image 
annotations. The annotations contain representative characteristics (spectral 

 
Figure 2.1.  Test areas used for comparison of remotely sensed vegetation coverage. Left) outer Odense fjord; Right) Nibe 
Bredning in the Limfjord. Maps indicate the 1 to 5 m depth interval and observed eelgrass cover along NOVANA transects.   

https://sav-denmark.dhigroup.com/
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and contextual) of the relevant habitat classes (i.e., submerged aquatic vege-
tation, soft bottom and/or hard bottom, vegetation types etc.) extracted from 
satellite imagery. To get a robust model for classifying SAV in Sentinel-2 im-
agery, the CNN was trained using image annotations from four different wa-
ter bodies in Denmark (parts of Odense Fjord, The Limfjord, Sydfynske Øhav 
and Lille Bælt), and S2 imagery from mid-April to late August between 2017 
and 2023, but without 2018 and 2022 which were only used as independent 
test data for model performance validation. As a general principle, the greater 
the amount of training data the more accurate the final map will be, assuming 
the input quality of the training data is good and represents the diversity of 
features of each habitat class seen in the input imagery. An independent da-
taset to that used for training, the validation data, is then used to tune the 
classification model to improve its performance. These two steps may be iter-
ative to progressively improve model performance. The outcome of the train-
ing is a robust SAV classification model (prototype), termed Base Model here-
after. 

The Base Model’s performance is tested with available S2 images of 2018 and 
2022 (= test data). By using data from a different year, we avoid spatial corre-
lation between our training dataset and the actual test dataset used for evalu-
ating final model performance. In addition, data from a different year, rather 
than a different water body, was chosen to evaluate the model performance 
in the more relevant use case of application to future years, as the model can 
be trained on past years for data from all coastal waters in Denmark if needed. 
When benchmarking different models for a classification problem, several 
metrics can be used to evaluate their performance and determine which 
model performs better. Usually, it is best to consider multiple metrics and not 
rely solely on one, as different metrics may give different insights into the 
model's performance. We use accuracy, F1 score and recall in the benchmark-
ing to report the predictive performance of the models. Accuracy (acc) is a 
metric that quantifies the proportion of correct predictions out of all predic-
tions made, and it is most effective when used with balanced datasets. On the 
other hand, recall is a measure that calculates the ratio of correctly predicted 
positive instances to all actual positive instances in the data. The F1 score is a 
metric that integrates precision and recall, making it suitable for datasets that 
are not balanced. Where feasible and meaningful, NOVANA data is used to 
assess the quality of the SAV maps. 

The main satellite input data for mapping SAV distribution remains un-
changed in the SAV Denmark App. The mapping relies on atmospherically 
corrected imagery since 2016 acquired by the Copernicus S2 mission. The S2 
mission is a land monitoring mission with a constellation of two satellites 
(S2A and S2B), allowing a revisit time of 3 days in the northern regions. As 
the S2 satellites also observe the land-water surface it can be used for marine 
observations as well. S2 satellites cover 13 spectral bands out of which three 
optical bands (red, green, blue) are mainly used for the benthic habitat map-
ping due to the lower absorption of light by water in this part of the spectrum. 
All these bands have a spatial resolution of 10x10 m. Before training the CNN 
on the data, the imagery is normalized and scaled by a non-linear transform 
to enhance contrast in marine areas. 

2.1.2 Integration of different RS data for areal cover of SAV 

Given that various RS data sources each possess their unique advantages and 
disadvantages associated with their respective specification such as spatial, 
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spectral, and temporal resolutions, the combination and integration of differ-
ent RS data can be advantageous and lead to more robust and comprehensive 
results beyond using one data source alone. For instance, one of the ad-
vantages of S2 is the regular, systematic image capturing, allowing for multi-
temporal analysis, both between years and within the growing season of in-
dividual years, as well as the potential for consistent SAV mapping on a na-
tional scale. Air- and spaceborne VHR data, on the other hand, captures spa-
tial details that remain unseen within the 10 x 10 m pixels of S2, allowing map-
ping of different SAV types and potentially extraction of more precise areal 
coverage estimates. The annual OP campaigns in Denmark therefore offer a 
valuable data source to examine selected areas in detail. However, the VHR 
satellite and OP data typically covers smaller areas, with the OP campaigns 
primarily focused on land areas, resulting in suboptimal spatial coverage. The 
VHR data is furthermore susceptible to noise from surface waves as well as 
image artifacts in OP (e.g., seamlines). A combination of the different RS data 
sources is therefore required to leverage their full potential for mapping shal-
low coastal habitats.   

DHI evaluated how SAV maps derived using CNNs and S2 imagery 
can be made more “robust” by integrating multitemporal imagery and 
how the mapping process with multi-temporal data can be made more 
efficient by using pre-trained models. The results are compared to NO-
VANA transect data. The model architecture was additionally tested 
on VHR satellite imagery and spring orthophotos, to explore the per-
formance on imagery containing a higher level of spatial details. All 
the various RS imagery tested in this study are listed in Table 2.1. 

AU investigated summer OPs from 2018 using NOVANA ground truth loca-
tions as training points using the XGBOOST pixel-based model (Chen & Gues-
trin 2016). The NOVANA ground truth points presented a challenge as these 
in situ observations and their associated data points sometimes did not align 
with the OP imagery. Despite this uncertainty of the exact spatial reference of 
NOVANA observations, AU wanted to investigate utilizing these in situ 
ground truthing without needing to create new labels for the pixel classifica-
tion. 

For each NOVANA datapoint a window of neighboring pixels was analyzed. 
An initial preprocessing of OP images was conducted to remove pixels that 
had an abundance of high reflectance values in the NIR band. This threshold 
was developed by analyzing OP regions that had wave and glint artifacts. 

Table 2.1. Information on RS imagery used in this project. Odense fjord covers the outer fjord, and Nibe Bredning is part of the 
Limfjord.   
RS type Data period used Test areas Specifications 
Copernicus Sentinel-2 satellites 2017-2023 Odense fjord 

Nibe bredning, Lillebælt and 
Sydfynske Øhav 

RGB, 10x10 m pixels 

Airbus Pléiades Neo VHR 
 satellites 

Spring 2023 Odense fjord RGB, 0.3x0.3 m pixels (pansharpened) 

Orthophotos 
 
 
 
 
 

Spring 2022 
Spring 2023 

 
 

Summer 2018 
 

Odense fjord  
Odense fjord  

 
 

Odense fjord and 
Nibe bredning 

RGB, 0.125x0.125 m pixels 
“ 
 
 

RGB, 0.2x0.2 m pixels 
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Secondly, because the NOVANA datapoints include a coverage percentage 
we filtered datapoints that had a less than 10% coverage as SAV absence. This 
would ensure that remaining neighboring pixels were more likely to contain 
seagrass pixels. The remaining data points were then used in the training of 
the model.  

2.1.3 Value of supplementing information layers for SAV mapping 

Usually, the information contained in optical RS data is sufficient for mapping 
SAV in Danish coastal waters with S2 data. However, the mapping can be 
supported with supplementing information such as bathymetry. For Odense 
Fjord, DHI tested if adding bathymetry could improve the performance of the 
CNN classification model applied on atmospherically corrected S2 data (Fig-
ure 2.2). The bathymetry layer was derived from S2 data and merged with 
survey data. Basically, the CNN model was trained with image annotations 
from multiple S2 images and bathymetry from Odense Fjord and the result 
compared to the SAV output of the same model but without using bathyme-
try. The models were compared in terms of accuracy, F1 metrics and recall. 

Similarly, for the XGBOOST OP model, AU investigated the use of supple-
mentary information layers on improving the detection performance of the 
model. Here we introduced ratios between the RGB-bands, a sediment raster 
layer and a 50 x 50 m resolution bathymetry raster derived from acoustic side 
scan sonar mapping (Danmarks Dybdemodel, 50 m opløsning (gst.dk). 
To prevent ordinality in the model’s interpretation of the sediment raster 
layer, a one hot encoding transform was used. The models were compared 
using standard accuracy, F1 and recall metrics. By systematically introducing 
the different layers we measured the contribution of each information layer. 
Model evaluation was conducted with an 80-10-10 random split on the NO-
VANA in situ ground truth data. Here 80% of the data was used for training 
the model, 10% was reserved for testing and a final 10% for validation. The 
validation split was unseen by the model during training and only used as 
validation.   

Evaluation of the model variants was conducted with stratified five-fold cross 
validation where the dataset was partitioned into training-test-validation sub-
sets five times, while an even distribution of classes was maintained. The 

 
Figure 2.2. Data from Odense Fjord used to test the use of bathymetry data to improve performance of the SAV CNN-based 
classification.    

https://gst.dk/soekort/den-danske-dybdemodel


17 

repeated cross-validation ensures results were not dependent on the parti-
tioning process and were thus more robust. 

2.1.4 Distinguishing vegetation types using RS data 

Directly distinguishing marine vegetation types in S2 data is a difficult task 
without inclusion of supplementary data. An alternative could be to use VHR 
data from OPs and satellites to map different SAV species in single images 
and combine the results with multi-temporal S2 SAV maps. In this task, the 
capability of differentiating SAV types using VHR RS imagery was tested us-
ing commercial Pléiades Neo VHR satellite data from May 2023 and a spring 
OP from 2022 for Odense Fjord (cf. specifications table 2.1). It was assumed 
that since different SAV types can be visually distinguished in both image 
sources, the CNN model should be able to classify them as well. Eelgrass 
meadows can exhibit quite unique patch patterns. In some instances, they 
grow in a circular formation that evolves over the course of a season. As the 
season progresses, the center of these circles is thinning out and tend to be-
come less dense, which is usually also visible in VHR RS data. Moreover, in 
spring imagery, eelgrass tends to be lighter green as compared to macroalgae. 
DHI tested if this distinctive pattern can also be traced in VHR RS data and be 
used to distinguish different vegetation types. 

For the test, two SAV types were identified – eelgrass and non-eelgrass type 
of SAV - based on visual characteristics using image interpretation and 
aligned with the presence of eelgrass from NOVANA in situ observations.  

Using a similar model architecture as for the S2 analysis described earlier, a 
CNN OP model was trained on a small set of annotations from the 2022 spring 
OP and another model with annotations extracted from the VHR satellite 
data. The spring OP from 2022 was taken under near ideal conditions for SAV 
mapping with excellent water clarity and no or very limited noise from sur-
face waves. Despite relatively good water clarity conditions, the VHR satellite 
imagery was affected by noise from surface waves in most of the covered area 
and some areas were also impacted by light cloud cover. Accordingly some 
of the affected pixels were masked out. 

Successful testing with VHR data (airborne and spaceborne) using the same 
CNN architecture as with S2 would greatly facilitate the implementation of 
VHR data analysis into the SAV Denmark App to enhance the S2-based map-
ping and support SAV type separation and refine SAV areal estimates. 

2.2 Development of an ecological status indicator based on 
RS data 

For the development and test of a biological indicator based on RS-based areal 
extent of SAV, we applied the commonly applied WFD ecological status assess-
ment approach, where ecological status classes are defined by comparing a ref-
erence condition with the observed condition for a given area to calculate an 
ecological quality ratio (EQR). Five ecological status classes are used for the 
WFD classification system: high, good, moderate, poor, and bad. These are de-
termined using an EQR scale ranging from 0 (bad) to high (1), see figure 2.3. 
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Reference conditions and EQR values have previously been defined for eel-
grass depth limits using the maximum depth of the main distribution of eel-
grass distribution (Zmax), as a water quality descriptor (Timmermann et al. 
2020). Zmax is here defined as the depth where the main distribution (>10% 
coverage) ends.  

The application of Zmax to assess the ecological status of our coastal waters, 
is based on the establishment of statistically strong relationships between 
Zmax and water clarity (Nielsen et al. 2002, Markager et al. 2010, Christensen 
et al. 2021) and between water clarity and longer-term changes in loadings of 
total nitrogen (TN) (Nielsen et al. 2002, Duarte 1991, 1995, Krause-Jensen et al. 
2005, Christensen et al. 2021, Krause-Jensen et al. 2021). In addition, availabil-
ity of historical observations of eelgrass distribution (from around year 1900, 
Krause-Jensen & Rasmussen 2009) has made it possible to determine so called 
reference conditions for eelgrass maximum depth limits (Zmax), representing 
undisturbed natural distributions. Using modelled relationships between 
Zmax, Kd and TN-loadings, it has then been possible to infer summer average 
values for water clarity, Chlorophyll-a concentrations, and annual TN-load-
ings in different water areas around Denmark in reference (pristine) condition 
(Timmermann et al 2020 and Timmermann et al 2021). For most of the 109 
water bodies under the WFD in Denmark, there is accordingly defined a his-
torical eelgrass Zmax and water clarity (Kd) value which represents the refer-
ence condition for each water body. In addition, EQR threshold values have 
been defined representing the transition from high to good (HG), good to 
moderate (GM), moderate to poor (MP) and poor to bad (PB) (Timmermann 
et al. 2020). These are shown in Table 2.2.  

Figure 2.3.   Overview of the five 
ecological classes used in the 
water framework directive. The 
EQR is the ratio between the pre-
sent (observed) condition and the 
reference condition in a particular 
water area. The EQR value can 
range between 0 and 1. 

 

Table 2.2.   EQR values separating the five ecological status classes for eelgrass depth 
limit. From Timmermann et al. (2020). 
Class EQR 
Reference 1.00 
High to Good 0.90 
Good to Moderate 0,74 
Moderate to Poor 0.50 
Poor to Bad 0.25 
Bad 0.00 



19 

2.2.1 Ecological status based on areal extent 

To develop reference conditions for an indicator based on the areal extent of 
SAV, we take advantage of an existing spatial GIS model which based on 
available environmental data layers calculates suitability for potential eel-
grass cover (scale 0 to 100% potential cover) for all the Danish coastal waters 
(Staehr et al. 2019b, Timmermann et al. 2021). The eelgrass habitat suitability 
model (HSM) utilizes light conditions at bottom based on Kd and depth, sed-
iment classes, bottom shear stress, relative exposure related to waves, salinity, 
water temperature and low oxygen (Timmermann et al. 2021). The model op-
erates at a 100x100 m pixel resolution and has previously been calibrated and 
validated using a data set covering environmental data for all Danish coastal 
waters during a 2012-2016 period. Given the time constraints of this project, 
we applied the HSM model without further local re-calibration or re-valida-
tion to improve local accuracy. 

To determine the reference Kd value needed for the model to estimate refer-
ence eelgrass areas, we calculated the mean light attenuation (Kd) from the 
eelgrass depths limit (>10% eelgrass coverage) under reference conditions, the 
status determined for the Danish River Basin Management Plan 3 (hereafter 
referred to as VP3) (Timmermann et al. 2020) and from the eelgrass depths 
limits representing the HG, GM, MP and PB transitions.  

For all model scenarios, we calculated the eelgrass probability (0 to 100%) in 
each 100x100 m pixel using the new reference-Kd data, while keeping the 
other environmental variables unchanged. The assumption is that the main 
driver of change from e.g. a poor to a moderate status in each water body, are 
changes in benthic light availability, as indicated in several studies investigat-
ing long-term changes in eelgrass (e.g. Nielsen et al. 2002). The nationally cal-
ibrated model is used to showcase the application possibilities. In future, the 
model needs to be recalibrated and validated to local and updated conditions, 
and further developed with better data layers on eg. sediment suitability.     

As the areal indicator should optimally represent responses in eelgrass areal 
cover related to changes in water quality (Kd, Chlorophyll-a and TN-load-
ings) we decided to restrict the analysis area to a depth range of 1 to 5 meters. 
Above 1 meter, presence and density of eelgrass is expected to be strongly 
sensitive to physical exposure from wave action. And at greater depth (here 
set to below 5 meters depth), detection of eelgrass using either S2 or OP be-
comes very challenging in many of our turbid waters (Staehr et al. 2019a). 
Although underwater vegetation can be detected with RS at greater depth un-
der clear water conditions, Danish coastal waters are generally turbid, thus 
limiting the depth range that can be used for RS detection. In this study com-
paring several RS approaches, a mask was created to restrict the assessment 
area provided by the model, S2 and OP data. 

For the comparison between the RS results and the model, the RS data was 
aggregated on the same resolution as the eelgrass model. While we expect that 
the orthophotos have an adequately high resolution, SAV detection from RS 
data with lower resolution can mean that the cell is only partly covered with 
vegetation. As a first estimate, we therefore applied a factor of 0.5 on the S2 
gating them to 100m x100m resolution (Figure 2.4). This assumption will be 
discussed later. The results are either used as area covered or cover percentage 
within one grid cell (Figure 2.4).  
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We calculated the modelled areas within the selected depth range by multi-
plying the probability value per grid cell by the size of the grid cell. First, we 
use the HSM to calculate the eelgrass area (ha) per water area under reference 
water clarity (kd) conditions, and EQR ratios representing HG, GM, MP and 
PB transition values based on the corresponding Kd-threshold values from 
the eelgrass depth limit EQR-thresholds. The reference area is then used to 
calculate the EQR value for a given water area: EQR = modelled VP3 status 
and observed area/reference area. The variation between modelled and ob-
served data can be used to describe the reliability and limitations of the re-
spective outputs. To define which ecological status group the observation cor-
responds to, the calculated EQR-value is now compared with the EQR values 
representing H, G, M, P or B conditions. The process is shown in figure 2.5. 

  

 
Figure 2.4. Diagram showing how we aggregate estimates of SAV cover for comparison of the different types of areal data (S2, 
OP and HSM derived).  
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To assess the usefulness of the proposed areal indicator, we applied area in-
formation on eelgrass for the two water bodies, outer Odense fjord and Nibe 
Bredning in the Limfjord. The SAV area was determined from classification 
of S2 and from OPs as described in section 6.2.1.  

It is important to note that because the RS method assesses the distribution 
area of SAV, whereas the model assesses the reference conditions for eelgrass, 
the comparison between the current distribution area and reference distribu-
tion area is only relevant for areas where eelgrass dominates SAV. This is the 
case Nibe Bredning in the Limfjord). In outer Odense fjord, fucoid macroalgae 
have likely contributed to the S2 estimated SAV cover, and this is also a rele-
vant issue in other Danish coastal waters. 

2.2.2 Intercalibration with eelgrass depth limit indicator 

To evaluate the usefulness of remotely sensed data on SAV area as a measure 
of water quality, we investigated relations between the calculated EQR values 
for the areal indicator with water quality conditions (Kd and Chlorophyll-a). 
For comparison we make a similar investigation for the EQR values obtained 
using the Zmax indicator.  

Specifically, for S2 derived areal SAV data, we investigate the importance of 
temporal (annual) changes in eelgrass area for the determination of EQR-val-
ues and associated ecological status assessment.   

2.2.3 Estimating the depth distribution limit Zmax from RS-data 

In areas where the SAV is dominated by eelgrass, it is potentially possible to 
assess the maximum depth limit of the main distribution limit of eelgrass 
(Zmax) based on RS classification of SAV. To estimate Zmax from RS data, we 

 
Figure 2.5. Process flow diagram. Blue boxes represent data and analysis involved in determining ecological status for eelgrass 
area. Green boxes represent data and analysis involved in determining ecological status for eelgrass depth limits. White boxes 
represent comparisons between the two approaches and an evaluation of the performance of the model used to predict eel-
grass area. VP3 is the River Basin Management Plan 3, from which light attenuation (Kd) values have been determined for each 
water body.  
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collated SAV absence and presence from the CNN-based S2 and XGBoost-
based summer OP prediction map for the two study areas. We first created a 
100 m buffer region around existing NOVANA transects programmatically 
by finding centroids of the transect over the recorded sampling locations (see 
figure 2.6 below). The Euclidean distance from each sampling point to the 
centroid was then calculated and outliers are handled for distances beyond 
the 5th and 95th percentile. A convex hull was then used over the remaining 
points to generate the 100 m buffer zone, as illustrated in figure 2.6.  

 
For 2018 there are three NOVANA transects in Nibe Bredning, the Limfjord, 
and two in Odense fjord. With the transect buffer we then aggregated the SAV 
presence/absence predictions by their associated depth. The aggregation was 
done over a 100 x 100 m region and a SAV coverage percentage was then cal-
culated. For every aggregated SAV coverage cell, we queried the underlying 
bathymetry raster to bin the coverage into a depth gradient, see figure. 6.7.  
For S2 SAV predictions each cell size was 10 x 10 m before aggregation, and 
for summer OP each cell size was 0.2 x 0.2 m. 

 

Figure 2.6. An example transect 
buffer from Odense fjord (top 
row) and Nibe Bredning, the Lim-
fjord (bottom row). The buffer 
zone is delineated by the pale-
yellow outline in all images. Left 
column: Transect buffer over-
layed onto OP RGB raster with 
NOVANA observations depicted 
by points. Yellow points represent 
low and red points high SAV cov-
erage; Middle column: Underlying 
bathymetry raster; Right column: 
S2 SAV predictions overlayed 
onto OP RGB raster; SAV pres-
ence is depicted in red and SAV 
absence in grey colour.    
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To estimate Zmax from the cover distribution along the depth gradient, we 
applied a non-linear model which previously has been used successfully to 
model the cover of macroalgae along a depth gradient. (Carstensen 2020).  

Modelled %cover =(max*tanh(Isat*exp(-kbio*z)))/(1+(physexp*(z**-2))) 

Where max is the maximum %cover, Isat a light saturation term, kbio is the at-
tenuation coefficient of the eelgrass index/cover, z is the depth and physexp 
represents the level of physical exposure from waves. The physical exposure 
term is included to model changes in cover at shallow depth, followed by an 
optimum defined by maximum cover, and then a decrease defined by the 
light dependent variables. The parameters of the model were determined sim-
ultaneously by nonlinear regression using the Gauss iterative method in 
SAS/STAT software package (SAS Institute Inc. 1994).  

In addition to estimating Zmax from cover around individual transects, we 
aggregated SAV cover for the entire fjord systems, and binned cover into 
depth intervals. This enabled us to provide an overall estimate Zmax for each 
of the two coastal areas and investigate trends in Zmax over the 2018 to 2022 
period. 

Results from the estimated Zmax values were compared with the Zmax val-
ues derived from analysis of the NOVANA transect observations. The latter 
is derived from detailed analysis of the so-called T-shaped vegetation tran-
sects, where Zmax is defined as the greatest depth where 10% coverage of 
eelgrass is reached. The procedure is described in appendix 2 in a recent pub-
lication from Miljøministeriet (2023).  

Figure 2.7. Diagram illustrating 
how SAV (here eelgrass) cover-
age (%) is calculated from SAV 
presence and absence, in this 
case by Sentinel-2. SAV cover-
age was calculated per pixel (100 
x 100 m) and combined with the 
bathymetry map. From this we 
then binned cover estimates into 
different depth intervals and ap-
plied a non-linear model to esti-
mate Zmax at 10% cover (black 
arrow). 
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3 Results 

3.1 Remote Sensing products 
Lisbeth Tangaa Nielsen, Silvia Huber, Lars B. Hansen, Mihailo Azhar 

3.1.1 Further development of a satellite-based classification system   

The main goal of this task was to investigate deep learning approaches to im-
prove the satellite-based classification system currently implemented in the 
SAV App and hence reduce manual work in the mapping process. This was 
done by implementing and training deep learning CNN models developed 
for computer vision tasks, such as semantic segmentation tasks. 

DHI developed a robust CNN Base model (prototype) for SAV predictions 
using S2 imagery. This part of the analysis did accordingly not include sepa-
ration of SAV types (i.e. seagrasses and macroalgae) but see later analysis on 
this. To get a robust SAV classifier, the Base model was trained using image 
annotations from four different water bodies in Denmark (Odense outer fjord, 
the Limfjord, Sydfynske Øhav and Lille Bælt), and S2 imagery from mid-April 
to late August between 2017 and 2023. The image annotation was distributed 
across the entire water bodies for multiple images covering both spring and 
summer conditions. The training data is a sparse set, consisting of labeled pol-
ygons of relevant classes, thus not all pixels in an image is labeled and used 
for training. With this database of heterogeneous S2 annotations, different 
configurations of regions and seasons for model training could easily be 
tested. The trained Base model was applied on new S2 images, which were 
not used for the training (= transfer learning), to test its predictive power.  To 
improve the model’s ability to generalize features from multiple images, the 
preprocessing scheme was optimized for S2 imagery as compared to the ex-
isting approach in the App. The Base model was tested for Odense Fjord (Fig-
ure 3.1) and the area of Nibe Bredning in the Limfjord.  

To assess the accuracy of the model, a set of annual SAV maps was created for 
each of the two test sites to get more robust estimates. The annual SAV maps 
represent aggregates of all the individual SAV maps created from cloud free 
S2 imagery acquired between April and September per year. Pixels classified 
as SAV in the annual maps had to be assigned the SAV class in at least 1/3rds 
of all the individual SAV maps. The predicted SAV areas in the annual maps 
were compared with available NOVANA data on the presence of eelgrass and 
floating macroalgae, using threshold value of 10% cover ration to convert to a 

Figure 3.1.  S2-based SAV clas-
sification based on a S2 opti-
mized preprocessing scheme. S2 
imagery (left) for 20 April 2019 in 
Odense fjord. The S2 classifica-
tion (right) used a CNN model ar-
chitecture where light green col-
ors represent SAV, light yellow 
represents non vegetated areas 
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binary SAV presence for comparison to the SAV maps. The S2 images listed 
in Table 3.1 were evaluated for Odense Fjord. Results show accuracies ranging 
from 0.70 to 0.88 when compared to independent NOVANA data and highest 
f1 score for 2019 (f1 = 0.71). 

A similar analysis was conducted for Nibe Bredning in the Limfjord (Table 
3.2). Again, imagery from 2018 and 2022 were not used for training the deep 
learning model. The accuracies range from 0.66 to 0.87, like the ones achieved 
for Odense fjord, but f1 and recall achieved higher maximum scores (max f1 
= 0.91 and max recall = 0.86). Interestingly, highest assessment metrics were 
achieved for 2018, the year not used for training the model. This demonstrates 
the potential of the predictive capabilities and robustness of the pre-trained 
Base model using CNN architecture. 

To assess the S2 SAV maps spatially, the annual SAV data was com-pared 
along NOVANA transects in the investigated areas. In figure 3.2 the observed 
eelgrass cover was qualitatively compared (overall patterns and trends) to S2 
SAV frequency for 2018 and 2021 based on the analysis of 5 images from 2018 
and 4 images from 2021 (see also Figure 3.4). The comparisons show good 
agreement, with differences mostly observed for transitions between unveg-
etated and vegetated sections and sometimes for areas with low eelgrass 
cover, where the area of sparse SAV is not detected in all images. This is not 
surprising as the scale between the two datasets differs considerably (point 
data versus 10x10 m pixels), and the potential issues with spatial alignment of 
ground survey data add uncertainty. 

Table 3.1. Assessment of SAV classifications using the prototyped Base model applied on S2 data compared to NOVANA tran-
sect surveys (combined cover ratio of eelgrass and floating macroalgae, where available) for Odense Fjord; image annotation 
from years in bold are used for model training. 
Year Accuracy f1 recall 
2018 0.88 0.38 0.29 
2019 0.82 0.71 0.60 
2020 0.70 0.63 0.40 
2021 0.79 0.63 0.56 
2022 0.70 0.45 0.74 
2023 Data used for training but no NOVANA data available for validation 

Table 3.2.   Assessment of SAV classifications using the prototyped Base model applied on S2 data compared to NOVANA 
transect surveys (combined cover ratio of eelgrass and floating macroalgae (where available) from Nibe Bredning, the Limfjord; 
image annotation from years in bold are used for model training. 
Year Accuracy f1 recall 

2018 0.86 0.91 0.86 

2019 0.87 0.9 0.84 

2020 0.66 0.53 0.39 

2021 0.73 0.66 0.53 

2022 No NOVANA data available for validation  
2023 Data used for training but no NOVANA data available for validation  
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Comparing the classification accuracy to the eelgrass cover reported in the 
NOVANA data (see Figure 3.3), the base model in general has a very high 
accuracy for predicting high cover, whereas for cover in the range 10-50 %, 
the accuracy is lower. The lower accuracy in areas with lower SAV cover, un-
der suboptimal conditions, reflects that less contrast leads to less accuracy in 
prediction. Resulting uncertain estimates in low SAV density regions there-
fore affects spatial distribution maps and assessment of seasonal changes in 
areas of low contrast. 

 
Figure 3.2.  Correspondence between eelgrass cover ratio observations in Nibe Bredning, the Limfjord, from NOVANA eelgrass 
transects (top rows) S2-derived annual SAV frequency (middle) and the match between the two (bottom); green indicates ac-
cordance and red disagreement. (a) represents the most western transect compared to (b) the second transect from west (see 
transects in Figure 2.1). For eelgrass cover, the darker the green colour, the denser the observed eelgrass patch, and for S2 
SAV frequency, the darker the blue colour, the more often the pixel was classified as SAV in the multitemporal analysis. The y-
axis shows y-coordinates in UTM32N 
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The distribution for 2018 was dominated by very high cover ratios, and the S2 
model performed well under these conditions. For 2021, the eelgrass cover 
ratio is more distributed and S2 has more difficulties to capture this pattern, 
however, the general patterns are well represented. 

3.1.2 Integration of different RS data for areal cover of SAV 

To achieve robust SAV areal cover estimates, the integration of multitemporal 
S2 imagery was tested. Seasonal and interannual SAV frequency maps can 
provide additional insights into distribution changes, growth patterns and 
SAV types. 

The newly developed SAV mapping approach with a robust pre-trained deep 
learning model (Base model) allows very efficiently to predict SAV across all 
suitable cloud free S2 images, and even on newly acquired data without 
providing additional annotations for model training. For Nibe Bredning, DHI 
applied the model to imagery since 2018 and extracted the SAV area for each 
prediction. Figure 3.4 clearly shows the seasonal growth of SAV between 
April and September and a general declining trend from 2018 to 2023 (note 
that the figure should be interpreted with care as the data can still contain 
some outliers from artefacts in the SAV maps). Interestingly, interannual var-
iation can be quite significant, in both positive and negative directions and 
can be associated with eelgrass and/or macroalgae. 

 

 
Figure 3.3.  Distribution between pixel classification using S2 imagery and eelgrass cover from NOVANA in situ data for Nibe 
Bredning, the Limfjord for 2018 (left) and 2021 (right). Most pixels classified as SAV (shown in green) falls above the 0.1 cover 
ratio threshold, and unvegetated below for the 2018 data. For 2021, a larger mixing of the two classes when comparing to the 
NOVANA data is seen.    

Figure 3.4. Seasonal variation in 
SAV distribution for Nibe Bred-
ning, the Limfjord for 2018-2023. 
Sentinel-2 imagery between April 
and September was used for the 
analysis. Note that the data is 
preliminary as the SAV data still 
may contain artefacts and pro-
duce some outliers. 
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To investigate SAV distribution per depth, the interannual SAV distribution 
was extracted for different depth intervals for both test sites. As can be seen 
in Figure 3.5, the largest area covered with SAV is found in the shallow zones 
and with increasing depth the SAV is decreasing.  

For Nibe Bredning, the Limfjord we observed a substantial decrease in vege-
tation coverage across all depth intervals from 2019 to 2020. This was followed 
by a minor increase in the subsequent years (2020-2022). Note that the depth 
limit was cut off at 5 meters as visibility in RS imagery is very limited at depths 
beyond this limit in the investigated area of interest. The total analyzed area 
identified in Nibe Bredning is 99.7 km2.  

Compared to Nibe Bredning, the submerged vegetation cover is more stable 
in Odense fjord, outer. Still there is some interannual difference for the shal-
lowest areas (0-1 m depth). Comparisons to SAV type classifications using 
VHR data indicate that the majority of the interannual variations can be at-
tributed to differences in macroalgae abundance (cf. section 7.1.4). The total 
analyzed area identified in Odense fjord is 35.6 km2. 

The corresponding SAV frequency map was produced for Odense fjord using 
multitemporal S2 imagery from April-September for a 6-year period (Figure 
3.6), and for Nibe Bredning, the Limfjord covering the 5-year period 2018-2022 
(Figure 3.7). To create the maps the Base model was applied on all suitable im-
ages in the investigated period. The maps give an indication of how stable 
SAV patches are across different years.  

 
Figure 3.5.  Distribution of predicted annual SAV from S2 imagery per depth in the range 0-5m for the years 2018-2022 for Nibe 
Bredning, the Limfjord (left) and Odense fjord, outer (right), including all areas with a minimum of 10 % coverage. The annual 
maps represent aggregates of SAV mapped using all available cloud free S2 images between April-September. Note that the 
depth limit was cut off at 5 meters and the total area compared is 99.7 km2 and 35.6 km2 for Nibe Bredning and Odense fjord, 
respectively.   
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In Odense fjord, the inter-annual frequency map reveals that some areas ex-
hibit consistent SAV growth, while others display more erratic patterns with 
high variability suggesting high patch dynamics here. These patterns can po-
tentially be linked to specific SAV types when combined with local 
knowledge and data with higher spatial resolution, such as OP or VHR data. 
In Nibe Bredning, similar areas of highly variable SAV cover can be seen, es-
pecially in very shallow waters. The reduction in SAV-covered areas between 
2019 and 2020 is also seen as larger areas with lower SAV frequency (Figure 
3.7).  

Focusing on the seasonal growth in 2019 and 2020 for Nibe Bredning, the sea-
sonal frequency maps (Figure 3.8) reveal distinctive patterns with constant 
SAV patches from spring to autumn while for other areas, changes through-
out the season can be documented. The interannual comparison shows a dis-
tinctive decline in SAV from 2019 to 2020 which is also reflected in the NO-
VANA observations for the area. 

Figure 3.6.  SAV frequency map 
for outer part of Odense fjord de-
rived from S2 data with the proto-
typed Base model in this study. 
The darker the green shade, the 
more often SAV was observed in 
the 6-year period from 2018-
2023. 

 

Figure 3.7. SAV frequency map 
for Nibe Bredning, the Limfjord 
derived from S2 data with the 
prototyped Base model in this 
study. The darker the green 
shade, the more often SAV was 
observed in the 5-year period 
from 2018-2022.   
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The summer OP 2018 SAV coverage by the XGBoost model (Figure 3.9) re-
vealed an overall higher SAV coverage in Nibe Bredning compared to Odense 
fjord. In Odense Fjord, eelgrass covered l   ess than ten percent coverage at 
each depth interval illustrating a patchy but a relatively constant coverage ra-
tio across the depth intervals. In Nibe Bredning steep drops in coverage ap-
peared after the five-meter depth interval, in line with expected lower light 
levels at deeper depths. 

 

Figure 3.8. SAV seasonal fre-
quency maps for Nibe Bredning, 
the Limfjord derived from S2 data 
with the Base model using CNN 
architecture. The darker the 
green shade, the more often SAV 
was observed for 2019 and 2020. 
The S2 SAV maps are overlaid 
with NOVANA transect points of 
the same years (2019 and 2020).   
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In terms of distinguishing vegetation types in Nibe Bredning, the Limfjord we 
compared the relative coverage of eelgrass and SAV for the prediction using 
summer OP and S2 imagery from 2018 (Figure 3.10). The two predictions 
largely differ, especially in shallower areas (0-5 m depth). While the CNN-
based S2 SAV coverage represents all types of SAV, the XGBoost-based OP 
coverage reflects eelgrass cover. The model for the OP uses image patches 
made of pixels with 20x20cm resolution (real ground resolution) and NO-
VANA ground truth eelgrass observations. NOVANA ground truth observa-
tions use coverage between 0 -100% with most observations in either 0% or 
100% observations. Due to the high resolution and NOVANA ground truth-
ing, we are confident that the training image patches are highly likely to be 
eelgrass and not macroalgae. In comparison, the S2 observations are on pixels 
10x10m resolution; with this resolution we cannot guarantee with confidence 
that the 10x10m patches are not just eelgrass.  

For the predicted eelgrass coverage using summer OP from 2018, the percent 
coverage is quite constant for depths down to 6m followed by a decrease in 
deeper waters, whereas the SAV cover predicted from S2 imagery shows gen-
erally higher cover for shallower depth, with a peak in relative coverage at 2-
3 m and a decrease towards deeper waters. 

 

Figure 3.9.   Comparison of SAV 
%coverage over depth, in Nibe 
Bredning, the Limfjord and outer 
Odense fjord based on XGBoost 
classification of summer ortho-
photos (OP) 2018. 
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3.1.3 Value of supplementing information layers for SAV mapping 

The value of using supplementing information (i.e. bathymetry, sediment 
type and band ratios) for SAV mapping was tested for both CNN-based S2 
models and pixel based XGBoost summer OP models. 

For the CNN architecture applied on S2 imagery, two different models were 
tested: 

1. A Site model which was trained with annotations from S2 imagery only 
from Odense fjord. 

2. A Site model2 which was trained on annotations from S2 imagery from 
Odense fjord and a 10m bathymetry layer. 

 
Table 3.3 shows that the model’s prediction could not be consistently im-
proved by adding bathymetry information, only the predictions for 19 July 
better. On the contrary, the model with bathymetry tends to overfit in this test 
area.  

Tests run for Odense fjord using a model supplemented with bathymetric 
data besides S2 annotations alone showed no improvement in the results (Ta-
ble 3.3). 

  
Figure 3.10.   Comparison of relative coverage of eelgrass and SAV for the prediction using summer OP from 2018, based on 
the XGBoost model, and the average SAV prediction from S2 imagery of the same year, using CNN architecture. While annual 
S2 shows all types of SAV (eelgrass and macroalgae), the results calculated for the OP show eelgrass coverage. Data are from 
Nibe- Bredning (top) and Odense Fjord (bottom). 

Table 3.3.   Model performance with and without bathymetry layer for Odense fjord using 
the CNN architecture   
S2 date Site model Site model 2 (incl. Bathymetry) 
 acc f1 recall acc f1 recall 
2017-07-19 0.75 0.73 0.71 0.76 0.74 0.72 
2018-07-24 0.78 0.37 0.55 0.71 0.31 0.55 
2019-07-24 0.80 0.71 0.68 0.79 0.69 0.65 
2020-08-17 0.74 0.48 0.51 0.67 0.47 0.61 
2021-08-22 0.72 0.60 0.65 0.74 0.63 0.69 
2022-08-12 0.78 0.42 0.52 0.73 0.37 0.48 
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XGBoost model applied on summer OP 2018 

Evaluation of the model variants was conducted with stratified five-fold cross 
validation where the dataset was partitioned into training-test-validation sub-
sets five times, while an even distribution of classes was maintained. The re-
peated cross-validation ensures results were not dependent on the partition-
ing process and were thus more robust. 

Table 3.4 shows improvement in model performance on validation dataset 
when including bathymetry, but knowledge of underlying sediment (based 
on existing classification maps) did not improve the model significantly. 

The best performing model, the model with all auxiliary information, and the 
color only model (RBGN) was then applied to the full Odense fjord, outer and 
Nibe Bredning, the Limfjord (Figure 3.11). In shallower water depths (0-1 m) 
in both regions, the full auxiliary model tended to overfit to the coarse ba-
thymetry raster. This can be seen for Odense Fjord in figure 3.11b where the 
underlying bathymetry raster is partially visible as a white square.  

The observed overfitting in shallower areas may be due to the low resolution 
of the bathymetry raster (50 m). The inclusion of the auxiliary information, 
however, allowed the model to detect SAV patches in contrast poor areas and 
with a reduced number of false positive detections. From figure 3.11 it appears 
that the color information alone is insufficient to detect the large section of 
eelgrass in the center whereas the inclusion of auxiliary information improves 
SAV detection, with a stronger detection of the eelgrass pattern. Further in-
vestigation using a finer resolution bathymetry map may be fruitful. 

Table 3.4.  Model performance using different combinations of inputs: color bands (RGBN), band ratios (between RGBN), sedi-
ment type (Sediment) and bathymetry raster (Bathymetry) 
Input layers acc f1 recall 
RGBN 0.81 0.69 0.61 
RGBN + Ratios 0.84 0.74 0.67 
RGBN + Ratios + Sediment 0.84 0.76 0.70 
RGBN + Ratios + Bathymetry 0.87 0.80 0.75 
RGBN + Ratios + Sediment + Bathymetry 0.88 0.82 0.77 

 
Figure 3.11.  Comparison of SAV prediction by the OP-NOVANA model for a) RGBN only, b) RGBN and all auxiliary info, c) Ortho-
photo; pixels predicted to have SAV are in white. Top panel is for Odense fjord and lower panel is from Nibe Bredning in the Limfjord. 
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3.1.4 Distinguishing vegetation types using RS data 

The capability of differentiating SAV types using VHR RS imagery was tested 
using commercial Pléiades Neo VHR satellite data from May 2023 and a 
spring OP from 2022 for Odense Fjord (cf. specifications table 2.1). For the OP 
analysis, initial results are promising with the model predicting the two SAV 
types reliably (eelgrass and non-eelgrass type of SAV) see Figure 3.12.  

Testing the scaling capability of the approach revealed that a model trained 
on a subset of the OP could be run successfully on all the imagery of Odense 
fjord by adding an additional 370 annotated image patches. In total a bit less 
than 1000 labeled image patches were used to train the OP model. The Odense 
Fjord-wide OP contained several seamlines and other image artifacts, 

Figure 3.12.  SAV type mapping 
using CNN model and spring OP 
from Odense fjord in 2022. The 
top shows the entire mapped 
area, the bottom row shows the 
Eastern coast with dense eel-
grass beds. SAV type 1 corre-
sponds to habitats with visual 
characteristics of eelgrass 
patches and SAV type 2 with 
macroalgae.      
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including visual offsets across seamlines which were complicating the analy-
sis. To mitigate these effects, each 1x1 km tile was preprocessed separately 
and image annotations were further distributed across various locations to 
include these data-inherent variations in the model training. The trained 
model captured the eelgrass patches along the eastern edge of Odense fjord 
and successfully separated these from other non-eelgrass SAV in the area. 
Similar results were found in the western part of the fjord, where eelgrass 
patches along Enebærodde were accurately delineated. Extensive patches of 
macroalgae were further mapped in the western fjord, though for deeper wa-
ters, these were misclassified as eelgrass, suggesting that the model would 
need further image annotations to improve separation of such extensive areas 
of SAV other than eelgrass at deeper areas. 

Comparing the OP results to the SAV prediction using a S2 image from 17 
April 2022, shows consistent overall patterns of SAV, however, when compar-
ing the area estimates from the two predictions, the areal SAV cover is about 
30% larger for the S2 prediction than for the OP analysis (Table 3.5). 

The analysis performed with commercial Pléiades Neo VHR data (cf. table 2.1 
for specifications) revealed that by only using a small dataset of image anno-
tations, the CNN model could separate the general patterns of the two differ-
ent vegetation types (Figure 3.13).  

When compared to the lower resolution S2 SAV predictions, overall patterns 
are similar. However, the area predicted to have SAV coverage in the VHR 
imagery is approximately half of that in the S2 SAV prediction (Table 3.5) as 

Table 3.5.  Comparison of SAV areas mapped with spring OP, VHR and S2 satellite images 

 Area (km2) 

RS imagery (Date) Unvegetated SAV Eelgrass type of SAV 
(SAV 1) 

Non-eelgrass type of SAV 
(SAV 2) 

S2 (8 June 2023) 19.81 5.95 NA NA 

Pléiades Neo VHR (13 May 2023) 22.91 2.85 1.08 1.78 

S2 (17 April 2022) 22.33 4.92 NA NA 

OP spring 2022 23.73 3.30 1.53 1.77 

 
Figure 3.13.  SAV mapping using Pléiades Neo VHR imagery (left) and Sentinel-2 (right) for parts of Odense Fjord. For the 
VHR analysis, SAV was divided into two SAV classes; SAV 1 corresponds to eelgrass and similar species (based on visual ap-
pearance in the data) and SAV 2 corresponds to non-eelgrass/macroalgae type of SAV.    
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already seen for spring OP data. Again, this difference may be explained by 
the fact that currently, the S2 model is trained to classify pixels with as little 
as 10% SAV coverage into the SAV class, while in the VHR image these sparse 
areas are distinguished into individual scattered patches of SAV and non-SAV 
pixels. It is encouraging to see that the VHR nicely predicts the distribution of 
different SAV types, with a higher abundance of eelgrass type of SAV (SAV1) 
for the eastern side of the fjord, whereas the western fjord is dominated by 
macroalgae and non-eelgrass type of SAV (SAV2) (Fig. 7.13), in accordance 
with observations.  

The spatial and temporal scaling potential of the CNN-based SAV type map-
ping model for Odense Fjord trained on spring OP 2022 was tested with OP 
2023 data, without additional training of the model (Figure 3.14).  

While the spring OP from 2022 is very well suited for marine habitat mapping 
(i.e., clear water, calm water surface etc.), the imagery from 2023 is influenced 
by significantly more surface noise and sun glint. However, the model per-
formed well in areas with environmental conditions like those of 2022, espe-
cially in terms of mapping the extent of the eelgrass patches. Obviously, the 
more severe the water surface noise (i.e, waves, glint), the worse the model 
performed, because the seafloor was no longer visible, and the model was not 
trained with annotations representing such conditions. Still, the test demon-
strated the transferability of the model, by applying the pre-trained OP model 
from one year to another, completely independent of survey data. This is very 
promising in terms of large-scale mapping in an efficient and cost-effective 
manner.  

Figure 3.14.  SAV mapping result 
for Odense fjord, using OP’s from 
spring 2022 (top) and 2023 (bot-
tom). The CNN SAV classification 
model was only trained on anno-
tations from the OP 2022 and 
then applied on the 2023 data, to 
test the spatial and temporal scal-
ing potential of the model.     
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3.2 Ecological status indicators  
Peter A.U. Stæhr, Cordula Göke, Mihailo Azhar, Jesper P.A. Christensen, 
Dorte Krause-Jensen and Sanjina U. Stæhr 

3.2.1 Ecological status based on areal extent from RS-data in relation 
to modelled reference areas 

The first step for the development of an indicator based on the areal distribu-
tion of eelgrass, was the definition of reference, good, moderate, poor, and 
bad conditions for areal coverage of eelgrass. For this we applied an existing 
spatial model (Staehr et al. 2019, Timmerman et al. 2021) which has previously 
been calibrated and validated against NOVANA data on eelgrass coverage. 
To model the reference, good, moderate, poor, and bad areas, we modified 
the original model by varying the light availability at the seafloor (Iz), as de-
termined by the light attenuation coefficient (Kd), the water depth and surface 
light during summer. Thus, we assumed that the only change between the 
different conditions (Reference, good, moderate, poor, and bad) was water 
clarity, and we assumed that changes in water clarity could be represented by 
a single Kd value for each water area. The modelled reference areas compared 
well with available historical maps of eelgrass distribution in the two studied 
fjord systems (Figure 3.15). 

In addition to Kd-values representing the different water quality scenarios, 
we applied a Kd-value representing water clarity for the depth limits of eel-
grass as determined in River Basin Management Plan 3 (VP3), corresponding 
to status conditions. In addition to Kd-values, we obtained the main distribu-
tion depth (Zmax) and from Kd, we modelled the areas covered with eelgrass 
(presence) for the different scenarios and the VP3 status condition (Table 3.6).  

 

 

 

Figure 3.15. Comparing mod-
elled reference areas with eel-
grass with historical evidence. 
For Odense fjord (A and B), the 
historical map (A) represents ob-
servations from 1960 with green 
color identifying areas with eel-
grass (provided by Mogens 
Flindt). For Nibe-Gjøl Bredning in 
the Limfjord (C and D), the histor-
ical map (C) was obtained from 
Ostenfeld (1908) where the 
shaded areas represent areas 
with eelgrass. 
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In figure 3.16 the modelled reference area of eelgrass is compared to the areal 
distribution modelled for the status (VP3) conditions.  

For Odense fjord, outer the modelled cover is dominantly below 50% except 
for some small areas in the south of the outer fjord and areas shallower than 
1 m. The area with a cover between 25% and 50% for VP3 status condition is 
above 1 m and moves down into the 1m – 5 m zone for the reference condition. 

Nibe Bredning in the Limfjord has generally a higher modelled eelgrass cover, 
where some areas fall in the class of above 75% potential cover. Similarly, to 
Odense Fjord, the area most suitable for eelgrass growth lie shallower than 1 
m and cover changes little in this depth zone. At greater depths cover in-
creases under reference conditions.  

  

Tabel 3.6. Values of water clarity (Kd), eelgrass main distribution depth (Zmax) and areas of eelgrass under different scenarios 
of ecological status (Reference, high:good, Good:Moderate, Moderate:Poor, Poor:Bad, and current status). The Kd and Zmax 
values were obtained from the VP3 analysis (Timmermann et al. 2020), and eelgrass area (presence) were calculated using Kd-
values in a habitat suitability model (HSM) by Staehr et al. (2019b). The calculated SAV areas were restricted to cover the 1-to-
5-meter depth zonation. Values are shown for the two study areas, Odense Fjord, outer and Nibe- Bredning in the Limfjord.   
Area Condition VP3 Kd VP3 Zmax HSM area (ha) 
Odense Fjord, outer Reference 0.33 5.6 410 

HG 0.37 5 389 
GM 0.45 4.1 341 
MP 0.65 2.8 232 
PB 1.31 1.4 67 

Status 0.74 2.49 205 
Nibe Bredning, the Lim-
fjord 

Reference 0.39 4.7 1005 
HG 0.44 4.2 989 
GM 0.52 3.5 948 
MP 0.78 2.35 772 
PB 1.56 1.175 267 

Status 0.75 2.44 810 
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To develop an area-based ecological status indicator we calculated the EQR 
values for the status thresholds and compared the mapped areas to these 
threshold values. We also developed a list of requirements to consider when 
implementing the area-based approach. While the depth based EQR thresh-
olds for eelgrass (Zmax) are the same for all waterbodies because they are 
calculated as percentage of the reference condition, the areal EQR depends on 
the specific delineation of the analyzed area and the water clarity conditions 
here. Unless the entire waterbody is examined with RS-data, area-specific 
EQR-values will therefore have to be defined to finally assign the ecological 
status classes for a given waterbody. The importance of applying a mask for 
EQR-thresholds are shown in table 3.7.  

The analysis shows that reducing the area based EQR calculation to the sug-
gested depths zone of 1 – 5 m, leads to bigger difference between EQR thresh-
olds compared to the thresholds estimated from the whole water body. Thus, 
limiting the analysis to the depths zone that is strongly influenced by light 
conditions is recommended based on results from the two sample fjords. 

  

  

  
Figure 3.16.  HSM modelled areal extent distribution of eelgrass in Odense fjord, outer part (upper figures) and Nibe Bredning, 
the Limfjord (lower figures). Left figures show the modelled area under reference conditions (high water quality), right: modelled 
distribution under current ecological status (VP3) conditions. The colors represent the modelled potential cover ranging from 
unsuitable (0~ 0 %cover) to suitable (1~ 100 %cover). 
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If it is necessary to further limit the analysis area to RS data of adequate qual-
ity, the EQR values will thus have to be calculated from the model for the 
same area. In both sample cases, the EQR values for the masked areas are 
higher than the EQR values only defined by the depth limits. Since the rele-
vant area can change due to RS data quality, the EQR based on the model 
must be recalculated for the correct mask. Missing S2 coverage due to cloud 
cover can be overcome by applying multiple S2-scenes over a growing season 
should. This will also provide data to determine summer growing season 
mean cover values.  

In figure 3.17, the S2 2018 SAV-presence/absence data is compared with the 
modelled eelgrass extent under the VP3 status. For the relatively low densities 
it is possible to visualize where approximately the differences lie.  The overlay 
shows how the model determines low potential cover in areas with patchy 
distribution determined by S2. 

  

Table 3.7. EQR table to define status groups for the two studied fjords. EQR areas for the area defined by depth limit and RS 
mask, only limited by depth limits and for the whole fjords. 
Area WFD-status  

thresholds 
EQR depth EQR area 

(masked) 
EQR area  

(within 1-5 m depth) 
EQR area 

(complete WB) 
Odense fjord, outer HG 0.89 0.95 0.93 0.96 

GM 0.74 0.83 0.80 0.89 

MP 0.50 0.57 0.51 0.73 

PB 0.25 0.16 0.14 0.52 

Nibe Bredning, the Limfjord HG 0.89 0.98 0.95 0.97 

GM 0.74 0.94 0.84 0.91 

MP 0.50 0.77 0.58 0.75 

PB 0.25 0.27 0.17 0.44 
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Just from a visual comparison with the HSM modelled eelgrass extent, it ap-
pears that, in Odense fjord, the S2 mapping overestimates SAV close to the 
optical depth limit, most clearly seen in the eastern part of Odense fjord. There 
seems to be a good agreement between the HSM modelled and observed (S2) 
SAV in the Limfjord area.  

Based on classifications of SAV by both OP and S2, we calculated the total 
area covered by SAV in both fjords during 2018 in the 1-to-5-meter depth 
range and compared with the expected areas estimated under status condition 
(VP3) with the HSM model (Figure 3.18). The classified SAV data (pres-
ence/absence) was converted into SAV cover using the aggregation method 
outlined in figure 2.4. Similar gradients of SAV with depth were found for S2, 
the OP and the HMS model although with slightly different patterns in the 
two fjord systems.  While we found a good agreement in the areal extent of 
SAV with S2 and OP in Nibe Bredning, OP provided much lower SAV esti-
mates in Odense fjord (Figure 3.18, lower graph). According to published data 
from the Danish EPA, the main depths limit (10% threshold) for Odense fjord, 
outer and Nibe Bredning was 2.51 m and 3.00 m in 2018 respectively (see table 
3.10). In comparison, both S2 and OP mapping suggest relatively high SAV 
coverage at 3-4 m depths in Odense fjord, whereas the HSM model indicated 
lower SAV cover here. In Nibe Bredning, the Limfjord, there was a better 
agreement with expected SAV coverage. below the depth limit for eelgrass.  

  

  
Figure 3.17.   SAV coverage in Odense fjord, outer (Top) and Nibe Bredning, the Limfjord (Lower), estimated from Sentinel-2 in 2018 
(Left), and compared with the HSM modelled distribution (Right) under the RBMP status conditions (VP3 in figure legends) scenario for 
2018. For ease of comparison, we have converted the Sentinel-2 data to same resolution (100 x100 m) as the HSM data. 
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For the year 2018 where both S2 and OP areal data were determined, we as-
sessed the ecological status based on these both data and compared with the 
status from the eelgrass depth limit. The conversion of EQR values to ecolog-
ical status classes were made using information from Table 3.7. Odense fjord 
was assigned poor condition by all available data in 2018. But for Nibe Bred-
ning, the Limfjord the area-based indicators estimated from S2 and OP, indi-
cated a poor condition, compared moderate as determined from Zmax and 
modelled eelgrass area (Table 3.8). Nibe Bredning, the Limfjord is according 
to Zmax and modelled SAV area in moderate ecological status, while OP and 
S2 indicates a poor status. This difference is also seen in figure 3.18, where S2 
and OP areas falls below the moderate-to-poor threshold the class boundary. 
For Odense fjord, the SAV area based on both S2, OP and the HSM model, 

Figure 3.18. SAV depth depend-
ency in the two studied fjord sys-
tems. Here we compare results 
from RS-mapping with model re-
sults for 2018. Inserted colored 
lines represent thresholds be-
tween the ecological status 
groups. Depth intervals are 1 (0-
1m), 2 (1-2m), 3 (2-3m), 4 (3-4m) 
and 5 (4-5m). 
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indicates a system in poor ecological status, which agrees with the status class 
defined from Zmax (Table 3.8).  

For both fjords, the differences between status class boundaries are small at 
shallow depth (0-1 m) and increases in deeper areas. This reflects that eelgrass 
areas in shallow waters are less sensitive to changes in light conditions (which 
are used for modeling the boundaries of the status classes). 

Based on the calculated areal coverage under observed (S2 and OP) conditions 
and the modelled reference areas, we calculated the EQR ratios (observed / 
reference areas) and compared the ecological status derived from the tradi-
tional main distribution depth (Zmax) indicator, with the new area-based in-
dicator, to assess how these changed during the 2018 to 2022 period (Figure 
3.19). 

Table 3.8. Ecological status according the WFD classes (here shown Poor (P) and Moderate (M)), as determined with the new 
area indication using S2, OP and modelled under status conditions (VP3) and compared with status derived from the currently 
used eelgrass main depth indicator (Zmax).  
System Information type EQR Ecological status 
Limfjord Fjord (Nibe Bredning, 
Langerak) 

S2 (SAV area) 0,69 P (EQR MP=0.77) 
OP (SAV area) 0,60 P (EQR MP=0.77) 

HSM status VP3 (SAV area)  0,81 M (EQR MP=0.77) 
NOVANA Zmax (depth) 0,64 M (EQR MP=0.50) 

Odense Fjord (Outer) S2 (SAV area) 0,55 P (EQR MP=0.57) 
OP (SAV area) 0,35 P (EQR MP=0.57) 

HSM status VP3 (SAV area) 0,50 P (EQR MP=0.57) 
NOVANA Zmax (depth) 0,45 P (EQR MP=0.50) 
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This preliminary analysis indicates that the area-based eelgrass indicator dis-
plays a larger change over time compared with the eelgrass depth-limit indi-
cator. For the Limfjord there was a very significant and positive relationship 
(r-pearson = 0.97, p=0.03) between the area-based eelgrass indicator and the 
eelgrass depth limit indicator. In comparison, no significant relationship was 
observed for the indicators in Odense fjord (p=0.50). Also, it seems that there 
is no obvious alignment between the temporal changes in the indicators with 
the water quality parameters shown in figure 3.19. This was investigated fur-
ther with a simple Pearsons correlation analysis (Table 3.9). 

Figure 3.19.  Comparison of eco-
logical indicators based on A) 
eelgrass depth limit (Zmax) and 
B) areal coverage of eelgrass 
vegetation as estimated for the 
years 2018 to 2022 in Nibe Bred-
ning, the Limfjord (LF) and 
Odense fjord, outer (OF) system. 
Changes in water quality deter-
mined as C) Chl a concentration 
and D) water clarity (Kd light at-
tenuation coefficient) are also 
shown. For the year 2018, we in-
serted the area based EQR val-
ues determined from orthophotos 
and modelled status (V3) for 
comparison. 
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Despite the lack of local calibration of the applied HSM eelgrass model, the 
applied reduction factor of 0.5 for S2 data and the assumption that SAV iden-
tified by RS-data reflects eelgrass, our preliminary results showed an overall 
good agreement in the status statement for the different types of data, which 
all categorized Odense fjord as being in poor condition in 2018. For Nibe Bred-
ning, the Limfjord, S2 and OP data indicated a system in Poor condition while 
Zmax and the HSM model indicated a system in Moderate status.  

3.2.2 Estimating the eelgrass depth limit (Zmax) from RS-data 

Based on eelgrass cover along individual transects, we estimated the main 
distribution depth limit (Zmax) from analysis of OP and S2 and compared 
with cover values and Zmax determined from in situ monitoring (NOVANA) 
data. Examples of results from Odense fjord and Nibe Bredning are shown in 
figure 3.20. 

Similar models were made for each of the NOVANA transects in the two 
fjords. For most of the transects in Odense fjord, the vegetation cover was be-
low the 10% threshold, and we could therefore not determine Zmax with the 
modelling approach. This also included the NOVANA stations. For the Lim-
fjord area, we could however, successfully estimate Zmax with the curve 

Table 3.9. Pearsons’s correlation I and significance level (p) between ecological indicators and water quality parameters –  
Chlorophyll (Chl) and light attenuation coefficient (Kd). Data used in the analysis are shown in Figure 3.13.    
System Indicator stats Chl Kd 
Nibe Bredning  
The Limfjord 
 

Zmax r -0,98 -0,31 
 p 0,12 0,69 

Area r -0,61 0,2 
 p 0,39 0,75 

Odense fjord  
Outer 

Zmax r 0,03 -0,53 
 p 0,96 0,36 

Area r 0,83 -0,09 
 p 0,08 0,89 

 
Figure 3.20. Modelling of Zmax for individual transects in Odense fjord, outer (upper) and Nibe Bredning, the Limfjord (lower) 
using cover data obtained from monitoring (NOVANA), Sentinel-2 (S2) and Orthophotos (OP) during summer 2018. Black ar-
rows indicate the estimated Zmax values at the 10% cover threshold (dashed line).  
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fitting approach for all data types. Average estimates of Zmax in the respec-
tive fjord based on transect data are shown in Table 3.10. 

A similar analysis was made on %coverage estimated using information from 
S2 and OP of the entire mapped area in each fjord system. Figure 3.21 provides 
examples of the resulting models for 2018 data. 

Using S2 data we modelled Zmax for the entire period 2018 to 2022 and com-
pared with officially (Danish EPA) published Zmax values for the two fjord 
systems (Figure 3.22).  

Table 3.10. Average estimates of Zmax using the curve fitting approach in the two studied 
areas. For comparison we show the official NOVANA Zmax values provided by the EPA.     
Fjord Data type Zmax (m) 
Odense Fjord (outer) NOVANA nd 
 NOVANA EPA 2,51 
 S2 2,93 
  OP nd 
The Limfjord (Nibe-Langerak) NOVANA 4,42 
 NOVANA EPA 3,00 
 S2 3,93 
  OP 2,25 

 
Figure 3.21. Modelling of Zmax using orthophoto (OP) and Sentinel-2 (S2) data from the entire water areas obtained in summer 
2018. Odense fjord, outer (upper) and Nibe Bredning, the Limfjord (lower). Black arrows indicate the estimated Zmax values.     
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Due to difficulties in classifying benthic vegetation in the deeper parts of 
Odense fjord, we investigated the usefulness of applying a depth mask of 3.5 
meter. This depth corresponds to the depth where < 1% of surface light is 
available at the seafloor in this system. Regardless of this mask, the estimated 
Zmax remained much deeper than the Zmax values reported for this system. 
In comparison, there seemed to be a good agreement between Zmax values 
from both OP and S2, and Zmax observed, displaying somewhat similar 
changes in Zmax over time.  

We finally calculated the EQR ratios based on the modelled Zmax values and 
compared the resulting ecological classes defined using EQR criteria devel-
oped for the main distribution depth of eelgrass (see Table 2.1). The result is 
shown in Table 3.11. 

Figure 3.22. Zmax values esti-
mated from modelling of vegeta-
tion cover along depth gradients 
by aggregating cover values 
across entire water areas in the 
outer Odense fjord and Nibe 
Bredning, the Limfjord. Zmax was 
determined for orthophotos (OP), 
Sentinel-2 (S2) and compared 
with Zmax estimated by the Dan-
ish EPA from the NOVANA tran-
sects. For Odense fjord we show 
S2 Zmax values with and without 
an optical depth mask of 3.5 m. 

 

Table 3.11. Comparison of Zmax, ecological quality ratios (EQR) and ecological status classes determined for two fjord systems 
using either traditional in situ observations of Zmax, or a modelled Zmax based on RS-cover values.   
  Zmax (m) EQR Ecological status class 
Fjord Year NOVANA S2 NOVANA S2 NOVANA S2 
Odense fjord  2018 2,5 3,8 0,45 0,68 P M 
outer 2019 2,5 4,3 0,44 0,76 P G 
 2020 2,7 4,1 0,49 0,73 P G 
 2021 2,6 3,7 0,47 0,66 P M 
 2022 2,6 4,3 0,47 0,77 P G 
Nibe Bredning 2018 3,0 3,0 0,64 0,63 M M 
the Limfjord 2019 2,2 2,9 0,48 0,61 P M 
 2020 1,8 1,6 0,39 0,33 P P 
 2021 1,8 1,9 0,38 0,39 P P 
 2022 nd 1,9 nd 0,40 nd P 
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The ecological status was assessed very similarly when using NOVANA and 
S2 in Nibe Bredning, the Limfjord but the overestimation of Zmax in Odense 
fjord by S2 resulted in an overall too positive assessment of the ecological sta-
tus here. 
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4 Discussion and conclusions 

4.1 Remote sensing products  
Lisbeth Tangaa Nielsen, Silvia Huber, Lars B. Hansen, Mihailo Azhar 

4.1.1 Further development of a satellite-based classification system   

DHI has developed and tested a new deep learning method based on a Con-
volutional Neural Network (CNN) architecture for the classification of SAV 
using S2, VHR and OP imagery. The new method was chosen based on a de-
sire to establish a more robust and efficient SAV classification workflow, 
which is flexible regarding which RS imagery is used as input for the habitat 
classifications and for which classification models can be trained on image 
archives and applied to future acquisitions of suitable imagery. This study 
demonstrated the feasibility of training a base model with annotations from 
imagery captured at different times and locations, and then applying it to new 
imagery without additional training. The analysis has shown that the SAV 
classification workflow using CNN architecture works well, not only on S2 
data, but also on OP and VHR satellite imagery. The scaling potential was 
demonstrated for Odense fjord and Nibe Bredning, the Limfjord, by applying 
pre-trained SAV models to new data and longer time series without using 
many efforts on model training. The results confirm that the deep learning-
based workflow can streamline the current method that is built into the DHI-
developed SAV Denmark App. This also contributed to provide more robust 
results that are less influenced by the current operator of the App.  

This newly developed approach offers several benefits: 

 The amount of training data and hence manual input is reduced signifi-
cantly. The habitat classification thus becomes more efficient (faster and 
cheaper) and robust by integrating multitemporal data. 

 Objectivity of the model training process is increased with reduced manual 
inputs. 

 Without the requirement for ‘local’ training data, the degree of scaling in-
creases significantly. Large-scale mapping thereby becomes significantly 
more efficient also with VHR data and ground data can be used for inde-
pendent validations. 

 The data agnostic method enables the integration of other data sources 
(i.e., air- and spaceborne VHR data) in the SAV Denmark App in an effi-
cient way. 

 By using the same method for the analysis of different RS data types, a 
certain uniformity is ensured in the output, which in turn facilitates com-
parison of results across data types. 

 Models trained per sensor/data source are spatially and temporally scala-
ble for S2 and most likely also for VHR data sources.  



 

50 

4.1.2 Integration of different RS data for areal coverage of SAV 

The study confirmed that integrating multiple-temporal S2 imagery increases 
the robustness of the estimation of SAV coverage and thus the SAV maps. 
With the new method, multi-temporal S2 imagery can efficiently be processed 
and by applying a pre-trained Base model, seasonal SAV can be predicted to 
aggregate annual SAV maps and seasonal SAV maps based on frequency of 
SAV observations over the season. The frequency maps reveal areas with high 
SAV seasonal variability, and this information can assist in identifying areas 
with low likelihood of SAV (false positives). However, the frequency maps 
cannot be used to extract SAV types/species, as not all stable patches repre-
sent eelgrass. Other SAV patterns can be rather stable across multiple years, 
and moreover, eelgrass can also be dynamic (Frederiksen et al. 2004, Balsby et 
al. 2017).    

Compared with NOVANA transects data, good agreement was achieved for 
Nibe Bredning, the Limfjord. In general, for dense SAV meadows, agreements 
between S2 based SAV and ground surveys from NOVANA was usually high. 
For sparse areas, comparisons are more difficult. As the S2 data represent 
mixed pixels in a 10 x 10 m grid contrasts with surrounding sediments are 
reduced in low density areas, and estimated cover values will often differ 
greatly from NOVANA’s point observations.  

In Odense fjord, SAV habitats seem to be more mixed, some showing high 
interannual and seasonal variability, while others are rather constant patches 
of macroalgae (e.g., Fucus vesiculosus), which resulted in lower accuracies for 
SAV estimation than for Nibe Bredning. The RS-based observation of high 
patch dynamics corroborates with analysis of variability based on NOVANA 
data (Balsby et al. 2017). With additional ground-truth training data, the 
model’s performance is expected to improve in the future. For the areal cov-
erage statistics, the S2 CNN-based marine habitat predictions present SAV 
presence/absence per pixel and when extracting statistics basically all pixels 
having SAV coverage greater or equal than 10 % are summed up, even though 
they effectively represent mixed pixels. This is clearly visible when comparing 
S2 SAV coverage estimates to OP or VHR satellite-based estimates.  Due to 
the higher spatial resolution, the data of from OP and VHR these sensors have 
the capability of separating even small individual patches of macroalgae and 
eelgrass. In the S2 images, these patches “disappear” in the lower resolution 
10x10 m pixels of S2 and appear as more uniform, sparse SAV pixels as shown 
in Figure 4.1.  
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This is due to the S2 Base model’s training setting to identify already pixels 
with as little as 10 percent vegetation coverage as SAV, resulting in a high 
number of SAV pixels summed up in the end. 

The challenges in converting the S2 SAV to a more accurate areal estimate by 
assigning a common cover is illustrated by comparing the eelgrass cover dis-
tribution reported in the NOVANA data (see figure 3.3). The average eelgrass 
cover ratio in the water body changed considerably between the two years 
shown. Comparing the area of SAV presence derived from S2 to areas esti-
mates derived from VHR or OP will likely make it possible to refine the areal 
estimate further or determine the best range of average SAV cover for the area 
and season. 

AU investigated using the existing NOVANA dataset to train a SAV pixel 
classifier model. Training a robust SAV classifier typically requires a large 
amount of annotated data, and the labour and time of an expert annotator. 
The NOVANA datasets include in situ observations of actual SAV distribu-
tion, making them a valuable resource that has already been gathered. By fo-
cusing on using the available NOVANA ground truth, additional labelling 
effort can be reduced.    

The model's performance on 2018 OP showed that it was possible to train a 
model that produced adequate output solely on the colour information pre-
sent in the OP at NOVANA observation locations. However, SAV was often 
not detected in potential SAV regions with darker pixel values due to the cor-
relation of depth and SAV presence.  

4.1.3 Value of supplementing information layers for SAV mapping 

In the NOVANA observations, less SAV was observed in deeper areas where 
pixels in the OP often appeared dark, and therefore, the model learned that 
dark pixels had a higher chance of SAV absence. Auxiliary information was 
introduced into the model to handle this. The most significant contributor to 
improving model performance was bathymetry. Adding depth information 

 
Figure 4.1.  Example of spatial resolution impacting SAV areal coverage estimates. Left: SAV mapped using S2; right: SAV 
mapped with spring OP 2022.   
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enabled the model to have higher confidence of SAV presence in dark pixels 
for shallower areas and some areas where the contrast between SAV and sed-
iment was poor. The model, however, displayed the potential to overfit to the 
bathymetric information. This is due to the low 50 x 50 m resolution of the 
bathymetry raster, where multiple NOVANA observations can be found 
within a single bathymetry raster cell, thus biasing the model. There is room 
to improve the model with a finer resolution bathymetry raster and with the 
inclusion of other spatial information or supplementary information, such as 
more detailed substrate types.   

It should be noted that differences in the effect of bathymetry on model per-
formance for the NOVANA-OP model and the S2 model are expected due to 
the resolution differences, the underlying model architecture and different 
data sources applied for model training. 

Adding bathymetry as an additional information source to the CNN model 
did not show any added value for mapping SAV, at least for the Odense Fjord 
test area. This shows that a robust classification model can be developed on 
S2 imagery alone, at least for the evaluated test case.  A possible explanation 
for this might be that bathymetric information is already inherent in the sat-
ellite imagery with increasingly darker shades for deeper waters and that this 
relationship is captured by the model. 

Still there might be potential to improve the results by adding other supple-
menting information, for instance related to physical stressors and substrate 
types at sufficient spatial resolution, but this has not been tested in the frame 
of this study.  

The result with the XTBoost model applied on OP 2018 data, however, 
showed the opposite. The accuracy of the SAV classification results was in this 
analysis improved with supplementing information, however, some also cre-
ated artefacts in the SAV classifications. 

This shows that the value of supplementing information depends on the site 
and the data used for the mapping, and eventually also on the method used. 
When suitable supplementing information is available it should in any case 
be tested if it can add to the mapping and help improving results. 

4.1.4 Distinguish vegetation types using RS data 

DHI has investigated whether the deep learning model can be trained to clas-
sify different SAV types using spring OP and VHR satellite imagery.  The re-
sults confirm the suitability of the model architecture to distinguish between 
two different SAV types if the habitats appear optically different in the im-
agery. 

Performance of the model highly depends on the input image quality, size 
and quality of annotations used for the model training and model tuning, as 
also shown in other studies (e.g., Thomas Berger et al., 2023).  

Generally, the higher the spatial resolution, the better the environmental con-
ditions should be under image acquisition for accurate SAV mapping. The 
classification results are more sensitive to water surface roughness when us-
ing VHR data for mapping compared to coarser imagery. This is because the 
roughness is smoothed out in the 10 by 10 m pixels of S2 imagery, while VHR 
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data can capture each individual wave feature. The study showed that OPs 
are ideal for species separation mapping using the CNN approach, provided 
they are acquired under optimal conditions. Alternatively, they can be sup-
plemented with VHR satellite imagery which results in comparable SAV re-
sults based on the preliminary models tested in this study. A complicating 
factor for mapping using OPs are seamlines between tiles. As shown in this 
study, we could partly mitigate these effects by implementing some extra pre-
processing steps and additional image annotations. However, additional 
model training, especially across different years, is expected to further im-
prove the results. So far, the result presented was only based on a minimally 
trained model on 2022 OP imagery.  

SAV type separation was only tested for two classes, eelgrass versus non-eel-
grass type of vegetation. However, other habitat classes should be investi-
gated, such as blue mussel beds that often coexist in the same habitats and are 
spectrally very similar to SAV. Since the model applied relies very much on 
structural information, the separation into additional habitats could be tested, 
provided there is sufficient training data available, for instance from ground 
or drone surveys. 

Based on the results achieved, the CNN model applied on OP and VHR im-
agery could be a useful element in the SAV Denmark App to supplement the 
large scale S2 mapping and provide into SAV type separation through the 
App. 

4.2 Ecological status indicators  
Peter A.U. Stæhr, Cordula Göke, Mihailo Azhar, Jesper P.A. Christensen, 
Dorte Krause-Jensen and Sanjina U. Stæhr 

4.2.1 Eelgrass ecological status indicator based on areal extent 

The investigation of a novel area-based indicator of ecological status, applied 
remotely sensed (S2 and OP) estimates of SAV (~observed values) and com-
pared these to reference conditions calculated with a GIS model developed 
for eelgrass (~reference values). As we could not differentiate between SAV 
types with the applied S2 and OP data, we assumed that SAV in the two stud-
ied fjord systems, were dominated by eelgrass. In areas where SAV is domi-
nated by other vegetation types, e.g. macroalgae, the current approach will 
need to be optimized. As no reference conditions are established for SAV (an-
giosperms and macroalgae), the best approach would be to apply RS-based 
observations which discriminate between vegetation types and provide eel-
grass cover estimates. 

Given this, our study essentially evaluated an area-based eelgrass indicator to 
assess the ecological status according to existing WFD classes. With this ap-
proach, we established EQR-threshold tables for the two studied systems and 
used these to determine the ecological status using RS observational data. To 
estimate areas of eelgrass representing reference and WFD class conditions 
we modelled scenarios with an existing eelgrass model and used information 
on water clarity (Kd) as the only driver. Other conditions related to climate 
change, e.g. water temperature and currents related changes in wind condi-
tions, could also have been modified. These climate related conditions were 
however, investigated with the applied HSM model, and found to be of minor 
importance for reconstructing eelgrass coverage under historical climate 
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conditions (Timmermann et al. 2021). For the method development, we did 
not change the model functions even though the Kd input data was replaced 
by data aggregated on waterbodies instead of spatially interpolated NO-
VANA data. In support of our modelling approach, we found good resem-
blance of the modelled reference conditions and historical maps of eelgrass 
distribution in both studied fjord systems. 

To determine EQR-values with the different RS-data types, we developed an 
aggregation method which enabled comparison of high-resolution OP data 
(0.2m x 0.2m), with S2 resolution (10m x 10m) and the model resolution (100 
x 100 m). As part of this, we made an overall reduction of the S2 estimated 
%cover by 50%. This was based on the knowledge that a 10m x 10m pixel 
classified as having SAV, does not have 100% coverage. The 50% reduction 
made the S2 derived %cover comparable with densities from in situ observa-
tions. The %cover in each pixel will likely vary, and it would therefore be op-
timal if S2 output can be classified to distinguish different SAV densities. 

Comparing SAV coverage estimated from both OP and S2 with the modelled 
areas, made it possible to show the method of calculating area-based EQR-
values and assign ecological status classes and comparing with those obtained 
using eelgrass depth distribution from NOVANA monitoring. Our analysis 
showed that EQR thresholds defining the ecological status classes, differed 
between the two study areas, and that the thresholds were affected by the 
choice of depth interval. This is a result of differences in bathymetry, where 
Nibe Bredning is dominated by a very shallow and even depth distribution 
compared to Odense fjord. Nibe Bredning is therefore expected to have a 
higher areal coverage of eelgrass to obtain good status compared to Odense 
fjord. In comparison, the EQR thresholds developed for the depth indicator, 
does not vary among regional water bodies. Future work with the area-based 
indicator should accordingly evaluate the variability in EQR thresholds be-
tween water bodies and consider optimizing the applied depth range to min-
imize variability, and if possible, apply similar EQR thresholds. 

With the developed EQR thresholds, we found that the resulting ecological 
status assessments (good, moderate etc.) obtained with the area-based and 
the depth-based indicators were quite comparable for Odense fjord but less 
so for Nibe Bredning. Part of this could be related to overestimation of the 
eelgrass area detected by S2 (see previous discussion on this). The reduction 
of the S2 by a fixed factor (0.5) reduced issues with overestimation of SAV 
cover but may however, have resulted in underestimation in dense SAV 
patches.  

Mapping of SAV with S2 showed a clear seasonality, with increasing areal 
cover during the growth season (see figure 3.4). To further reduce uncer-
tainty in the SAV estimated areal coverage, it would be advisable to estimate 
the areal coverage based on multiple scenes over the growth season. This 
would furthermore ensure that the entire water body is covered by S2, and 
thus enable use of constant EQR thresholds (ie. not affected by the area cov-
ered by S2). 

A simple comparison with other water quality parameters used in assignment 
of ecological status, showed some alignment with the new area-based indica-
tor, but also discrepancies. This was also found for the traditional Zmax-based 
indicator, suggesting that at the water body level, it can be difficult to find 
strong relationships between water quality indicators and year-to-year 
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changes. Thus, while results for the area-based indicator indicate the useabil-
ity of the approach, there are issues that need to be addressed before imple-
mentation of the area-based indicator at larger scale. Importantly, the combi-
nation of RS mapping and HSM modelling hinges on the ability of methods 
to provide comparable results, to ensure that assessments of ecological status 
is not affected by methodological differences.  

For the demonstration purpose, we determined reference and WFD class ar-
eas, using a spatial GIS model (HSM) which was originally calibrated using 
information from all the Danish coastal seas and from a period prior to the 
2018-2022 period we examined here. It seems likely that improved data on 
local conditions, such as wave exposure and bottom shear stress, in combina-
tion with sediment characteristics could improve model estimates of eelgrass 
cover under current and future water quality scenarios.  

It is relevant to mention that the applied HSM was originally developed to 
cover all Danish waters. Some parameters or surrogate layers are known to 
lack detail both in resolution and data detail, e.g. the sediment classes do not 
contain organic content and the resolution is not high enough for the resolu-
tion of the eelgrass model (Staehr et al 2019b). We have recently developed 
new approaches to estimate the organic content for which we can test if it im-
proves the eelgrass model. Additional to improving the HSM used in this ap-
proach, there are local models available for selected water bodies. While the 
HSM model is thoroughly calibrated using in situ eelgrass transect data, it 
may be that some local areas are not well represented by transects which may 
lead to local uncertainties in the local estimations of SAV area. Also, the HSM 
model was calibrated using eelgrass and environmental data covering a pe-
riod prior to the investigated period. Ideally, the HSM model should be cali-
brated with the most recent data available.  

Another source of uncertainty relies in the area determined by RS-technolo-
gies. For the indicator analysis, we applied S2 and OP classifications which 
did not distinguish between eelgrass other SAV and other dark elements. As 
eelgrass and macroalgae co-occur in the two investigated areas, the assump-
tion that the area-based ecological indicator represents eelgrass, is associated 
some unknown uncertainty. This uncertainty therefore complicates compari-
sons with existing ecological indicators such as the eelgrass main depth indi-
cator. Future work with the area-based indicator should therefore consider 
masking out areas where macroalgae and other benthic conditions (eg. mus-
sels and rocks) may significantly bias the RS determined SAV area. For this 
project we furthermore assumed that the S2 data on presence-absence, repre-
sented a threshold of 50% SAV coverage. In future it should be tested, if S2 is 
capable to estimate the coverage as well, or if there are other approaches to 
improve the mapping in lower resolutions. 

The EQR values are very sensitive both to the quality of the RS-based map-
ping and the modelling data. Furthermore, the EQR-values are very much de-
pendent on the specific area under investigation. It is therefore essential when 
comparing areal estimates from a model with those from RS-data of different 
resolution, that the areas must be clipped by the same mask as the RS data. 
This is not so trivial as RS-data may vary depending on e.g., cloud cover (for 
S2) or sun glint and waves (OP). Thus, for every analysis based on RS map-
ping, an initial step is to identify appropriate model area, and calculate the 
new EQR thresholds representing these. Optimally the area available for anal-
ysis should be representative for the entire water body. Here the advantage 
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of using S2 is that frequent overpasses make it possible to obtain a growing 
season average map, thus covering the entire area of interest. 

4.2.2 Estimating the eelgrass depth distribution limit Zmax from RS-
data 

Using a simple curve fitting model we were able to estimate the main depth 
distribution limit of eelgrass from RS-derived SAV cover data along binned 
depth intervals. Again, we assumed that SAV reflected mostly eelgrass in the 
studied areas.  

The applied curve fitting model approach seemed especially promising when 
utilizing information on %cover for the entire study areas, which provided 
Zmax estimates in better agreement with the traditional in situ-based deter-
minations. The Zmax estimation procedure worked best in Nibe Bredning, the 
Limfjord area, where seagrass meadows generally have a higher cover and 
are more homogeneously distributed. In comparison, the less dense and more 
fragmented eelgrass patches in Odense fjord, made it difficult to identify the 
10% threshold limit from which Zmax is determined. Adding to this, Odense 
fjord is characterized by more turbid conditions and a quite mixed seagrasses 
and macroalgae vegetation belt, affecting the delineation of the deeper areas 
of eelgrass with RS-data. Applying an optical depth mask reduced this prob-
lem somewhat, but the ecological status classes were still overestimated. In 
comparison, the modelled Zmax-values in the Limfjord area, provided very 
similar assessments of ecological status as compared to the traditional NO-
VANA approach. 
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5 Recommendations for the implementation 
phase 

Peter A.U. Stæhr, Lisbeth Tangaa Nielsen, Mihailo Azhar, Cordula Göke, Sil-
via Huber, Jesper P.A. Christensen, Lars B. Hansen, Sanjina U. Stæhr and 
Dorte Krause-Jensen 

Based on the experience gained from this study, several possibilities should 
be considered for further investigations in a possible implementation phase 
of the IMM project. 

5.1 Further development of RS products for mapping under-
water vegetation 

Implementation of the tested deep learning method in the SAV Denmark App 
for enhancing the current mapping process: With a pre-trained robust deep 
learning model, the SAV mapping can be based on new S2 images without 
additional input from the operator leading potentially to an optimization of 
the resulting SAV maps with limited input. 

Implementation of the possibility of multitemporal SAV mapping based on 
S2 data: It will significantly improve the robustness and quality of the SAV 
information and provide insight into the vegetation dynamics and distribu-
tion, throughout the growing season, but also between years. Furthermore, 
this will provide better data for assessment of the areal based indicator. 

Implementation of OP for mapping SAV in the SAV Denmark App: Already 
in the current version of the App, OPs can be accessed as a visual aid for S2 
image interpretation, but OP data cannot be directly used for mapping. With 
the new deep learning approach, an implementation of OP classification can 
be both in the form of a generic SAV model and a model specifically trained 
to map different SAV classes. 

Implementation of NOVANA data into the SAV Denmark App: For both 
qualitative assessments using visualization and quantitative evaluation of the 
produced SAV maps, independent field data can be applied directly in the 
App. 

5.2 Development of eelgrass status indicators from RS-data  
The assumption that SAV determined from RS is dominated by eelgrass needs 
to be supported: The developed ecological status indicators (both the area-
based and the modelled Zmax-based) currently represent eelgrass indicators 
and can therefore only be applied in areas where SAV is dominated by eel-
grass.  

Assessment of the vegetation area based on S2 should be qualified in relation 
to how close (% coverage) it is assessed to be in each grid cell: In our current 
analysis, we assumed a mean coverage of 50% in the conversion from the S2 
presence/absence cards. The cover is expectedly higher, and if we had used a 
60% cover, the area indicator would have also classified Nibe Bredning, the 
Limfjord to be in a Moderate status. Optimally S2 would be able to distinguish 
between low, medium, and high cover of underwater vegetation. This, 
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however, requires a lot more accurate training data. Overall, the ability to dis-
tinguish sparse from dense vegetation with S2 hinges on clear visible differ-
ences between vegetation and bare areas, which can be challenging in areas 
of mixed vegetation and in waters of high turbidity.  

Optimization of the GIS model (HSM) used to determine the area based EQR 
thresholds should be considered: The HSM model currently used has been 
calibrated with large-scale national data sets of the driving environmental 
variables. In the implementation phase, the model should be updated and cal-
ibrated in relation to the water areas it will be used for. 

It would be obvious to assess the possibility of creating other condition indi-
cators based on data from S2 and OP:  For instance, should it be possible to 
assess changes in the condition based on calculation of densities (% coverage) 
of underwater vegetation in different depth intervals. The HSM model can 
easily provide reference states for this parameter. 

It is also recommended to further investigate conditions locally around the 
NOVANA monitoring transects used to estimate Zmax: Here it will be possi-
ble to retrieve information about densities and areas and make a more locally 
well-defined assessment. 

Importance of seasonality for the indicator assessment should be investigated: 
The significance of seasonal changes in the area distribution of underwater 
vegetation, identified in this study, should be assessed in relation to selecting 
the optimal S2-based area estimates (is it the summer mean or, for example, 
spring that responds best to changes in the environmental state). 

Overall: Results from this study show that it is possible to create both an area-
based condition indicator and to assess the ecological status based on Zmax 
estimated with RS-data. We therefore recommend continuing with nation-
wide analysis of these two supplementary RS-based vegetation indicators. 
Ideally, such an analysis should include both OP and S2 classification and 
cover a period like this study (e.g. 5 years) to investigate the robustness of the 
indicators over time in the different water bodies. 
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The use of different types of remote sensing data to ac-
quire information on the distribution and cover of marine 
underwater vegetation was examined in two Danish 
fjord systems for the period 2017-2023. Promising results 
including high resolution vegetation mapping, differentia-
tion of vegetation types as well as different algorithms for 
improved cover and area classification were investigated. 
Results from classifications and estimates of areal cover-
age were combined with modelling to develop novel eel-
grass indicators of ecological status, which were evaluated 
against existing indicators. Recommendations for large-
scale implementation of remote sensing as a promising 
tool to map and monitor marine vegetation are provided.
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